首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.

Background

Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody that prolongs survival in the treatment for head and neck cancer (HNC), but only in 10–20 % of patients. An immunological mechanism of action such as natural killer (NK) cell–mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR-bearing cells.

Objective

To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells.

Methods

Peripheral blood mononuclear cells (PBMC), NK, DC, and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853-861 tetramer staining.

Results

TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p < 0.01) and HNC patients (p < 0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα (p < 0.0001), IFNγ (p < 0.0001), and IL-12p40 (p < 0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p < 0.001). TLR8-stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab.

Discussion

VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination and for determining biomarkers of response.  相似文献   

2.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

3.
Toll-like receptors (TLRs) play a fundamental role in the recognition of bacteria and viruses. TLR3 is activated by viral dsRNA and polyinosinic-polycytidylic acid (poly(I:C)), a synthetic mimetic of viral RNA. We show that NK cells, known for their capacity to eliminate virally infected cells, express TLR3 and up-regulate TLR3 mRNA upon poly(I:C) stimulation. Treatment of highly purified NK cells with poly(I:C) significantly augments NK cell-mediated cytotoxicity. Poly(I:C) stimulation also leads to up-regulation of activation marker CD69 on NK cells. Furthermore, NK cells respond to poly(I:C) by producing proinflammatory cytokines like IL-6 and IL-8, as well as the antiviral cytokine IFN-gamma. The induction of cytokine production by NK cells was preceded by activation of NF-kappaB. We conclude that the ability of NK cells to directly recognize and respond to viral products is important in mounting effective antiviral responses.  相似文献   

4.

Background

Toll-like receptor (TLR) agonists reportedly have potent antiviral and antitumor activities and may be a new kind of adjuvant for enhancing immune efficacy. Resiquimod (R848) is an imidazoquinoline compound with potent antiviral activity and functions through the TLR7/TLR8 MyD88-dependent signaling pathway. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of double-stranded RNA that induces the production of pro-inflammatory cytokines by the activation of NF-κB through TLR3. This study investigated the potential of R848 and poly(I:C) as an adjuvant 146S foot-and-mouth disease virus (FMDV) vaccine formulated with aluminum hydroxide (Al(OH)3).

Results

Antibody titers to FMDV and CD8+ T cells were markedly enhanced in mice immunized to 146S FMDV?+?Al(OH)3?+?R848?+?poly(I:C) compared with mice immunized to FMDV?+?ISA206. IFN-γ secretion substantially increased compared with IL-4 secretion by splenic T cells stimulated with FMDV antigens in vitro, suggesting that R848, poly(I:C), and with Al(OH)3 together biased the immune response toward a Th1-type direction.

Conclusions

These results indicated that the R848 and poly(I:C) together with Al(OH)3 enhanced humoral and cellular immune responses to immunization with 146S FMDV antigens. Thus, this new vaccine formulation can be used for FMDV prevention.  相似文献   

5.
NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-alpha, and investigated the secretion of IFN-gamma, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-gamma was dependent on MEK1/ERK, p38 MAPK, p70(S6) kinase, and NF-kappaB, but not on calcineurin. IFN-alpha induced a similar effect, but promoted lesser IFN-gamma secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.  相似文献   

6.
Background: It is well known that both heat shock protein (HSP) and Toll-like receptor (TLR)3 agonist polyinosinic:polycytidylic acid (poly(I:C)) are capable of promoting the antigen-specific immune responses. In the current study, we assessed whether the anti-tumor effects of the HPV16E749–57-based vaccine can be elevated by combined applications of poly(I:C) and oxygen-regulated protein 150 (ORP150) in a mouse cervical cancer model. Methods: Recombinant mouse ORP150 and HPV E749–57 peptide were combined to passively form the ORP150–E749–57 complex under heat shock conditions. The effects of ORP150–E749–57 complex plus poly(I:C) adjuvant on lymphocyte proliferation and functional cytotoxic T cells were investigated by methyl thiazolyl tetrazolium (MTT), ELISPOT, and non-radioactive cytotoxicity assays. Finally, the complex's therapeutic anti-tumor effects with and without adjuvant therapy were observed in a tumor challenge experiment. Results: This combination vaccine approach significantly enhanced the proliferation of splenocytes and induced strong E749–57-speci?c CTL responses. More importantly, the ORP150–E749–57 complex plus poly(I:C) vaccine format demonstrated more potent anti-tumor effects than ORP150–E749–57 complex alone or E749–57 plus poly(I:C) in TC-1 tumor-bearing mice. Conclusion: Both poly(I:C) and ORP150 chaperone can synergistically enhance the anti-tumor effects of the HPV16E749–57-based vaccine in vitro and in vivo. This strategy provides a platform for the design of a tumor therapeutic vaccine capable of inducing an effective anti-tumor immune response.  相似文献   

7.
TLR3 recognizes viral dsRNA and its synthetic mimetic polyinosinic-polycytidylic acid (poly(I:C)). TLR3 expression is commonly considered to be restricted to dendritic cells, NK cells, and fibroblasts. In this study we report that human gammadelta and alphabeta T lymphocytes also express TLR3, as shown by quantitative real-time PCR, flow cytometry, and confocal microscopy. Although T cells did not respond directly to poly(I:C), we observed a dramatic increase in IFN-gamma secretion and an up-regulation of CD69 when freshly isolated gammadelta T cells were stimulated via TCR in the presence of poly(I:C) without APC. IFN-gamma secretion was partially inhibited by anti-TLR3 Abs. In contrast, poly(I:C) did not costimulate IFN-gamma secretion by alphabeta T cells. These results indicate that TLR3 signaling is differentially regulated in TCR-stimulated gammadelta and alphabeta T cells, suggesting an early activation of gammadelta T cells in antiviral immunity.  相似文献   

8.
We examined properties of the innate immune response against the tumor-specific antigen simian virus 40 (SV40) large tumor antigen (Tag) following experimental pulmonary metastasis in naive mice. Approximately 14 days after mKSA tumor cell challenge, expression of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), and RANTES was upregulated in splenocytes harvested from mice, as assessed by flow cytometry and antibody array assays. This response was hypothesized to activate and induce tumor-directed NK cell lysis since IL-2-stimulated NK cells mediated tumor cell destruction in vitro. The necessary function of NK cells was further validated in vivo through selected antibody depletion of NK cells, which resulted in an overwhelming lung tumor burden relative to that in animals receiving a control rabbit IgG depletion regimen. Interestingly, mice achieved increased protection from experimental pulmonary metastasis when NK cells were further activated indirectly through in vivo administration of poly(I:C), a Toll-like receptor 3 (TLR3) agonist. In a separate study, mice receiving treatments of poly(I:C) and recombinant SV40 Tag protein immunization mounted effective tumor immunity in an established experimental pulmonary metastasis setting. Initiating broad-based immunity with poly(I:C) was observed to induce a Th1 bias in the SV40 Tag antibody response that led to successful antitumor responses not observed in animals treated only with poly(I:C) or SV40 Tag. These data have direct implications for immunotherapeutic strategies incorporating methods to elicit inflammatory reactions, particularly NK cell-driven lysis, against malignant cell types that express a tumor-specific antigen such as SV40 Tag.Considerable interest has been directed toward the role innate immunity plays in reducing malignant growth and progression. Although the innate system by broad definition is not endowed with the antigen specificity and memory recall of adaptive immunity, natural killer (NK) cells are an innate effector population that shares most properties with the adaptive arm of the immune system, excluding receptor rearrangement (28). Interestingly, NK cells can be employed to directly target and destroy malignant cell types through diverse pathways that include tumor major histocompatibility complex class I (MHC-I) loss and upregulation of stress-inducible protein ligands for the NK cell activating receptor NKG2D (24, 29). Much effort is under way in human clinical trials to manipulate NK cell properties for directed therapies against cancer (13, 29).One strategy in eliciting innate immunity in general involves activating the Toll-like receptor (TLR) family, which are preferentially expressed by innate effectors such as NK cells, macrophages, and dendritic cells (DCs) (26). TLR ligands include a variety of pathogen-associated molecular patterns with differing downstream responses based on the cell type involved and specific TLR activated. In TLR-expressing cells, signal transduction pathways follow a MyD88-independent course to produce type I interferons (IFNs) (e.g., TLR3) or a MyD88-dependent pathway that results in the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and IL-6 and expression of costimulatory molecules such as CD40, CD80, and CD86 (e.g., TLR4 and TLR9) (2, 12, 23, 26). In the case of TLR3, activation by poly(I:C) causes DCs and additional accessory cells to secrete type I interferons and IL-12, activating NK cells and prompting NK cell secretion of IFN-γ among other effects (14, 20). Ultimately, modulation of TLR activation results in the generation of a range of cytokines that promote inflammation, Th1 bias, and NK cell-directed killing that can be utilized in a beneficial manner for tumor treatment strategies.TLR agonist incorporation alongside vaccine strategies has resulted in promising results in mouse models of cancer (12). Indeed, the TLR7 agonist imiquimod is an effective FDA-approved topical compound used to treat superficial basal-cell carcinoma and external genital warts (9). However, to our knowledge, modulating TLR activity while also incorporating recombinant simian virus 40 (SV40) large tumor antigen (Tag) protein immunizations in a therapeutic tumor setting has not been previously reported. SV40 Tag is a clinically relevant tumor-specific antigen that has been shown to be expressed by a number of human malignancies, including malignant pleural mesothelioma (MPM), and represents a potential target for immunotherapeutic strategies.Our laboratory has previously defined a unique role for antibody-dependent cell-mediated cytotoxicity (ADCC) reactions—specific against SV40 Tag—promoting cytotoxic T-lymphocyte (CTL) activity in response to neoantigens through cross-presentation of tumor cell debris in a model of experimental pulmonary metastasis (16, 17). In this report, we analyze the role of innate immunity in mediating tumor cell lysis during the early course of tumorigenesis in the absence of vaccination. Overall, we find that activated NK cells are necessary effector cells in achieving antitumor reactions and providing partial tumor immunity during the onset of tumorigenesis and that these functioning NK cells are likely activated in vivo due to inflammation as a result of tumor growth and progression. The burden of tumor challenge could be further reduced in naive animals with the indirect activation of NK cells using poly(I:C) as a TLR3 agonist prior to and during malignant dissemination. Interestingly, in an established pulmonary tumor setting, therapeutic treatment of mice with poly(I:C) and recombinant SV40 Tag resulted in enhanced protection that was not observed using poly(I:C) or SV40 Tag alone. One effect of instituting poly(I:C) treatment alongside SV40 Tag immunizations was a Th1 skewing of the SV40 Tag IgG antibody response that correlated with therapeutic tumor protection.Our results have direct implications for the prevention and treatment of malignancies, such as MPM, that express the SV40 Tag oncoprotein. Combining specific aspects of innate and adaptive immunity by targeting both NK cells and humoral activity against SV40 Tag, respectively, represents a novel and clinically significant immunotherapeutic strategy for potential use in patients.  相似文献   

9.
Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.  相似文献   

10.
Toll‐like receptor (TLR)‐mediated signalling plays a role in cerebral ischaemia/reperfusion (I/R) injury. Modulation of TLRs has been reported to protect against cerebral I/R injury. This study examined whether modulation of TLR3 with poly (I:C) will induce protection against cerebral I/R injury. Mice were treated with or without Poly (I:C) (n = 8/group) 1 hr prior to cerebral ischaemia (60 min.) followed by reperfusion (24 hrs). Poly (I:C) pre‐treatment significantly reduced the infarct volume by 57.2% compared with untreated I/R mice. Therapeutic administration of Poly (I:C), administered 30 min. after cerebral ischaemia, markedly decreased infarct volume by 34.9%. However, Poly (I:C)‐induced protection was lost in TLR3 knockout mice. In poly (I:C)‐treated mice, there was less neuronal damage in the hippocampus compared with untreated I/R mice. Poly (I:C) treatment induced IRF3 phosphorylation, but it inhibited NF‐κB activation in the brain. Poly (I:C) also decreased I/R‐induced apoptosis by attenuation of Fas/FasL‐mediated apoptotic signalling. In addition, Poly (I:C) treatment decreased microglial cell caspase‐3 activity. In vitro data showed that Poly (I:C) prevented hypoxia/reoxygenation (H/R)‐induced interaction between Fas and FADD as well as caspase‐3 and ‐8 activation in microglial cells. Importantly, Poly (I:C) treatment induced co‐association between TLR3 and Fas. Our data suggest that Poly (I:C) decreases in cerebral I/R injury via TLR3 which associates with Fas, thereby preventing the interaction of Fas and FADD, as well as microglial cell caspase‐3 and ‐8 activities. We conclude that TLR3 modulation by Poly (I:C) could be a potential approach for protection against ischaemic stroke.  相似文献   

11.
The innate immune system has evolved to recognize invading pathogens through pattern recognition receptors (PRRs).Among PRRs, Toll like receptors (TLRs 3, 7/8,9) and RIG-I like receptors (RLRs) have been shown to recognize viral components. Mucosal immune responses to viral infections require coordinated actions from epithelial as well as immune cells. In this respect, endocervical epithelial cells (EEC''s) play an important role in initiating innate immune responses via PRRs. It is unknown whether EEC''s can alter immune responses of macrophages and dendritic cells (DC''s) like its counterparts in intestinal and respiratory systems. In this study, we show that endocervical epithelial cells (End1/E6E7) express two key receptors, TLR9 and RIG-I involved in anti-viral immunity. Stimulation of End1/E6E7 cells lead to the activation of NF-κB and increased secretion of pro-inflammatory cytokines, IL-6 and IL-8. Polarized End1/E6E7 cells responded to apical stimulation with ligands of TLR9 and RIG-I, CpG-ODN and Poly(I:C)LL respectively, without compromising End1/E6E7 cell integrity. At steady state, spent medium from End1/E6E7 cells significantly reduced secretion of pro-inflammatory cytokines from LPS treated human primary monocyte derived macrophages (MDMs) and DC:T cell co-cultures. Spent medium from End1/E6E7 cells stimulated with ligands of TLR9/RIG-I restored secretion of pro-inflammatory cytokines as well as enhanced phagocytosis and chemotaxis of monocytic U937 cells. Spent medium from CpG-ODN and Poly(I:C)LL stimulated End1/E6E7 cells showed significant increased secretion of IL-12p70 from DC:T cell co-cultures. The anti-inflammatory effect of spent media of End1/E6E7 cell was observed to be TGF-β dependent. In summary, the results of our study indicate that EEC''s play an indispensable role in modulating anti-viral immune responses at the female lower genital tract.  相似文献   

12.

Background

Eimeria tenella (E. tenella) is a species of Eimeria that causes haemorrhagic caecal coccidiosis, resulting in major economic losses in the global poultry industry. After E. tenella infection, the amount of ATP and Bax in host cells showed highly significant changes. Therefore, it is necessary to investigate the effects of ATP and Bax on the apoptosis of E. tenella host cells.

Results

The ATP-treated group and the V5-treated group had higher E. tenella infection rates than the untreated group at 24, 48, 72, 96, and 120 h after infection with E. tenella. The results of flow cytometry showed that compared with the control group, the mitochondrial permeability transition pore (MPTP) opening in the untreated group was highly significantly increased (P?<?0.01) at 4, 24, 48, 72, 96, and 120 h. Moreover, results from Hoechst-Annexin V-PI staining and flow cytometry showed that the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those of the control group at 4 h, while the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were higher at varying degrees than those in the control group at 24–120 h (P?<?0.05 or P?<?0.01). After treatment with ATP and Bax inhibitors, the rates of early apoptosis, late apoptosis, and necrosis, in addition to the MPTP opening in both the ATP-treated and V5-treated groups, were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those in the untreated group.

Conclusions

ATP and Bax play important roles in regulating the apoptosis of E. tenella host cells.
  相似文献   

13.
NK cells from NOD mice induced with poly(I:C) in vivo exhibit low cytotoxicity against a range of target cells, but the genetic mechanisms controlling this defect are yet to be elucidated. Defects in the expression of NKG2D and its ligands, the RAE-1 molecules, have been hypothesized to contribute to the reduced NK function present in NOD mice. In this study, we show that segregation of the NK-mediated killing phenotype did not correlate with the NOD Raet1 haplotype and that the large alterations in NKG2D expression previously reported on NK cells expanded in vitro were not observed in primary, poly(I:C)-elicited NK cells in vivo. Additional studies indicate a complex genetic control of defective NOD NK cells including genes linked to the MHC and possibly those that are associated with an altered cytokine response to the TLR3-agonist poly(I:C).  相似文献   

14.
Toll-like receptors (TLRs) are important immune receptors in discriminating self from nonself and in initiating the innate and adaptive immune response. TLR4 and TLR7 have been proven to be highly expressed in chicken’s spleen. Thus, this study was to evaluate the TLR4 and TLR7 messenger RNA (mRNA) expression levels in the spleen of broilers fed diets supplemented with nickel chloride (NiCl2) using the methods of quantitative real-time PCR (qRT-PCR). Two hundred forty-one-day-old avian broilers were equally divided into 4 groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Results showed that TLR4 and TLR7 mRNA expression levels in the spleen were lower (P?<?0.05 or P?<?0.01) in the 300, 600, and 900 mg/kg groups than those in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could lower TLR4 and TLR7 mRNA expression levels in the spleen of broilers, implying that NiCl2 could impair the innate and adaptive immunity in spleen by injuring immunocytes and/or decreasing the content of cytokines through TLRs.  相似文献   

15.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

16.
TLRs play a critical role in early innate immune response to virus infection. TLR3 together with TLR7 and TLR8 constitute a powerful system to detect genetic material of RNA viruses. TLR3 has been shown to bind viral dsRNA whereas TLR7 and TLR8 are receptors for viral single-stranded RNA. In this report we show that TLR7 or TLR8 are not expressed in human epithelial A549 cells or in HUVECs. Accordingly, A549 cells and HUVECs were unresponsive to TLR7/8 ligand R848. TLR3 was expressed at a higher level in HUVECs than in A549 cells. The TLR3 ligand poly(I:C) up-regulated IFN-beta, IL-28, IL-29, STAT1, and TLR3 expression in HUVECs but not in A549 cells. An enhanced TLR3 expression by transfection or by IFN-alpha stimulation conferred poly(I:C) responsiveness in A549 cells. Similarly, IFN-alpha pretreatment strongly enhanced poly(I:C)-induced activation of IFN-beta, IL-28, and IL-29 genes also in HUVECs. In conclusion, our results suggest that IFN-alpha-induced up-regulation of TLR3 expression is involved in dsRNA activated antiviral response in human epithelial and endothelial cells.  相似文献   

17.
The innate immune system recognizes pathogens through pattern recognition receptors (PRRs), and toll-like receptors (TLRs) are one of the most important PRRs. TLR3 is a unique member of TLR family that recognizes double-stranded RNA (dsRNA), a viral replication intermediate. There is a variation in its response among diverse fish species toward the same stimulants. We identified and cloned TLR3 from Indian snow trout, Schizothorax richardsonii and carried out its expression analysis in un-induced and poly (I:C) challenged fish. It has an open reading frame (ORF) of 2712 bases that encodes a polypeptide of 904?amino acids. The molecular weight of the polypeptide was predicted to be 102.4482?kDa with an isoelectric point of 7.40. Quantitative real time PCR (qRT-PCR) was carried out after 24 hours of poly (I:C) treatment and expression of TLR3 was analyzed in different tissues. As compared with untreated fish the poly (I:C) challenged fish revealed significantly high expression of TLR3 in kidney followed by liver and gills.  相似文献   

18.
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.  相似文献   

19.
Toll-like receptors (TLRs) are transmembrane receptors composed of extra cellular leucine rich repeats (LRRs) that identify specific pathogen associated molecular patterns triggering a innate immune cascade. The LRR regions of TLR 1–10 proteins of goat (Capra hircus), sheep (Ovis aries), buffalo (Bubalus bubalis) and bovine (Bos taurus) were modeled using MODELLER 9v7 tool and validated. The similarities and variations of these 10 TLRs extracellular regions of each species were compared using online servers like FATCAT, SSM and SSAP. It was evident that the LRRs of TLRs like 1, 2, 3 and 6 showed structural convergence with <1 % RMSD deviation while TLRs like 5, 7, 8 and 9 had high divergence. Docking analysis showed that TLR 2, 3 and 7 of all the selected four ruminant species were able to bind with their corresponding ligands like Peptidoglycan (PGN), Poly I:C, Resiquimod (R-848) and Imiquimod. However, there were variations in the active site regions, interacting residues and the number of bonded interactions. Variations seen among TLR structures and their ligand binding characteristics is likely to be responsible for species and breed specific genetic resistance observed among species or breeds.  相似文献   

20.
Cyclooxygenase 2 (COX)-2 is induced by bacterial and viral infections and has complex, poorly understood roles in anti-pathogen immunity. Here, we use a knock-in luciferase reporter model to image Cox2 expression across a range of tissues in mice following treatment with the either the prototypical bacterial pathogen-associated molecular pattern (PAMP), LPS, which activates Toll-like receptor (TLR)4, or with poly(I:C), a viral PAMP, which activates TLR3. LPS induced Cox2 expression in all tissues examined. In contrast, poly(I:C) elicited a milder response, limited to a subset of tissues. A panel of cytokines and interferons was measured in plasma of wild-type, Cox1−/− and Cox2−/− mice treated with LPS, poly(I:C), MALP2 (TLR2/6), Pam3CSK4 (TLR2/1), R-848 (TLR7/8) or CpG ODN (TLR9), to establish whether/how each COX isoform modulates specific PAMP/TLR responses. Only LPS induced notable loss of condition in mice (inactivity, hunching, piloerection). However, all TLR agonists produced cytokine responses, many of which were modulated in specific fashions by Cox1 or Cox2 gene deletion. Notably we observed opposing effects of Cox2 gene deletion on the responses to the bacterial PAMP, LPS, and the viral PAMP, poly(I:C), consistent with the differing abilities of the PAMPs to induce Cox2 expression. Cox2 gene deletion limited the plasma IL-1β and interferon-γ responses and hypothermia produced by LPS. In contrast, in response to poly(I:C), Cox2−/− mice exhibited enhanced plasma interferon (IFNα,β,γ,λ) and related cytokine responses (IP-10, IL-12). These observations suggest that a COX-2 selective inhibitor, given early in infection, may enhance and/or prolong endogenous interferon responses, and thereby increase anti-viral immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号