首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90°C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S°) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus , and the bacterium, Thermotoga maritima , both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which in the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus , virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S°(or polysulfide) to H2S. S° reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima , although the mechanism by which this occurs is not known.  相似文献   

2.
Shuttle vectors for hyperthermophilic archaea   总被引:2,自引:0,他引:2  
Progress in understanding the basic molecular, biochemical, and physiological characteristics of archaeal hyperthermophiles has been limited by the lack of suitable expression vectors. Here, we report the construction of versatile shuttle vectors that can be maintained, and selected for, in both archaea and bacteria. The primary construct, pAG1, was produced by ligating portions of the archaeal cryptic plasmid pGT5 and the bacterial plasmid pUC19, both of which exhibit high copy numbers. A second vector construct, pAG2, was generated, with a reduced copy number in Escherichia coli, by introducing the Rom/Rop gene from pBR322 into pAG1. After transformation, both pAG1 and pAG2 were stably maintained and propagated in the euryarchaeote Pyrococcus furiosus, the crenarchaeote Sulfolobus acidocaldarius, and in Escherichia coli. An archaeal selective marker, the alcohol dehydrogenase gene from Sulfolobus solfataricus, was isolated by polymerase chain reaction (PCR) amplification and cloned into the two constructs. They were stably maintained and expressed in the two archaea and conferred resistance to butanol and benzyl alcohol. However, the vector pAG21, deriving from pAG2, proved the more stable in E. coli probably due to its lower copy number in the bacterium. Conditions are presented for the use of the vectors which, potentially, can be used for other hyperthermophilic archaea. Received: January 12, 1997 / Accepted: May 29, 1997  相似文献   

3.
Abstract A ferredoxin has been purified from one of the most ancient and the most thermophilic bacteria known, Thermotoga maritima , which grous up to 90°C. The reduced protein ( M r approx. 6300) contains a single S = 1 2 [4Fe 4S]1+ cluster with complete cysteinyl ligation, and was unaffected after incubation at 95°C for 12 h. It functioned as an electron carrier for T. maritima pyruvate oxidoreductase. Remarkably, the properties and amino acid sequence of this hyperthermophilic bacterial protein are much more similar to those of ferredoxins from hyperthermophilic archaea, rather than ferredoxins from mesophilic and moderately thermophilic bacteria.  相似文献   

4.
Hyperthermophilic Archaea and Bacteria are an extraordinarily important class of organisms for which genetic tools remain to be developed. Unique technological obstacles to this goal are posed by the thermophilic and, in some cases, strictly anaerobic nature of these organisms. However, recent advances in the cultivation of hyperthermophiles, in the discovery of genetic elements for vector development, and in the construction of genetic markers point toward the achievement of this goal in the near future. Transformation protocols have already been reported for Sulfolobus and Pyrococcus, and plasmid-mediated conjugation was recently found in Sulfolobus. Plasmids are available for Sulfolobus, Pyrococcus, and the bacterial hyperthermophile Thermotoga, and these provide the bases for vector construction in these hosts. A Desulfurococcus mobile intron may provide a novel means to introduce genes into a variety of archaeal hosts. With full genome sequences of several hyperthermophiles available soon, genetic tools will allow full exploitation of this information to study these organisms in depth and to utilize their unique properties in biotechnological applications. Received: 27 January 1997 / Accepted: 24 April 1997  相似文献   

5.
The Sulfolobus solfataricus P2 genome collaborators are poised to sequence the entire 3-Mbp genome of this crenarchaeote archaeon. About 80% of the genome has been sequenced to date, with the rest of the sequence being assembled fast. In this publication we introduce the genomic sequencing and automated analysis strategy and present intial data derived from the sequence analysis. After an overview of the general sequence features, metabolic pathway studies are explained, using sugar metabolism as an example. The paper closes with an overview of repetitive elements in S. solfataricus.  相似文献   

6.
Hyperthermophilic microorganisms grow at temperatures of 90 °C and above and are a recent discovery in the microbial world. They are considered to be the most ancient of all extant life forms, and have been isolated mainly from near shallow and deep sea hydrothermal vents. All but two of the nearly twenty known genera are classified asArchaea (formerly archaebacteria). Virtually all of them are strict anaerobes. The majority are obligate heterotrophs that utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. Most also depend on the reduction of elemental sulfur to hydrogen sulfide (H2S) for significant growth. Peptide fermentation involves transaminases and glutamate dehydrogenase, together with several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Similarly, a novel pathway based on a partially non-phosphorylated Entner-Doudoroff scheme has been postulated to convert carbohydrates to acetate, H2 and CO2, although a more conventional Embden-Meyerhof pathway has also been identified in one saccharolytic species. The few hyperthermophiles known that can assimilate CO2 do so via a reductive citric acid cycle. Two So-reducing enzymes termed sulfhydrogenase and sulfide dehydrogenase have been purified from the cytoplasm of a hyperthermophile that is able to grow either with or without So. A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of So has been proposed. However, the mechanisms by which So reduction is coupled to energy conservation in this organism and in obligate So-reducing hyperthermophiles is not known.Abbreviations ADH alcohol dehydrogenase (ADH) - AOR aldehyde ferredoxin oxidoreductase - FMOR formate ferredoxin oxidoreductase - FOR formaldehyde ferredoxin oxidoreductase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glutamate dehydrogenase - GluOR glucose ferredoxin oxidoreductase - KGOR 2-ketoglutarate ferredoxin oxidoreductase - IOR indolepyruvate ferredoxin oxidoreductase - LDH lactate dehydrogenase - MPT molybopterin - POR pyruvate ferredoxin oxidoreductase - PLP pyridoxal-phosphate - PS polysulfide - TPP thiamin pyrophosphate - So elemental sulfur - VOR isovalerate ferredoxin oxidoreductase  相似文献   

7.
We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon‐derived paralogous RNAs, RNA‐2571–4, show extended complementarity to the 3′ UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA‐2571 and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is faster degraded in vitro upon duplex formation with RNA‐2571. Insertion of the 1183 3′ UTR downstream of the lacS gene results in strongly reduced lacS mRNA levels in transformed cells, indicating that antisense regulation can function in trans.  相似文献   

8.
Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.  相似文献   

9.
Bioelectrochemical systems are an attractive technology for regulating microbial activity. The effect of an applied potential on hydrolysis of starch in Thermotoga maritima as a model bacterium was investigated in this study. A cathodic potential (?0.6 and ?0.8 V) induced 5-h earlier growth initiation of T. maritima with starch as the polymeric substrate than that without electrochemical regulation. Moreover, metabolic patterns of starch consumption were altered by the cathodic potential. While acetate, H2, and CO2 were the major products of starch consumption in the control experiment without electrolysis, lactate accumulation was detected rather than decreased acetate and H2 levels in the bioelectrochemical system experiments with the cathodic potential. These results indicate that the applied potential could control microbial activities related to the hydrolysis of polymeric organic substances and shift carbon and electron flux to a lactate-producing reaction in T. maritima.  相似文献   

10.
The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a k(cat) of 16 s(-1) and a K(m) of 175 microM at a pH optimum of 8.0 when assayed at 25 degrees C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum k(cat) of 100 s(-1), with a K(m) of 93 microM at 65 degrees C. Activity was stable at 65 degrees C for >24 h and at 90 degrees C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer.  相似文献   

11.
The gene encoding the elongation factor 1alpha (EF-1alpha) from the archaeon Sulfolobus solfataricus strain MT3 (optimum growth temperature 75 degrees C) was cloned, sequenced and expressed in Escherichia coli. The structural and biochemical properties of the purified enzyme were compared to those of EF-1alpha isolated from S. solfataricus strain MT4 (optimum growth temperature 87 degrees C). Only one amino acid change (Val15-->Ile) was found. Interestingly, the difference was in the first guanine nucleotide binding consensus sequence G(13)HIDHGK and was responsible for a reduced efficiency in protein synthesis, which was accompanied by an increased affinity for both guanosine diphosphate (GDP) and guanosine triphosphate (GTP), and an increased efficiency in the intrinsic GTPase activity. Despite the different thermophilicities of the two microorganisms, only very marginal effects on the thermal properties of the enzyme were observed. Molecular evolution among EF-1alpha genes from Sulfolobus species showed that the average rate of nucleotide substitution per site per year (0.0312x10(-9)) is lower than that reported for other functional genes.  相似文献   

12.
13.
Abstract An open reading frame ( pelA ) specifying a homolog of pelota and DOM34, proteins required for meiotic cell division in Drosophila melanogaster and Saccharomyces cerevisiae , respectively, has been cloned, sequenced and identified from the archaebacterium Sulfolobus solfataricus . The S. solfataricus PelA protein is about 20% identical with pelota, DOM34 and the hypothetical protein R74.6 of Caenorhabditis elegans . The presence of a pelota homolog in archaebacteria implies that the meiotic functions of the eukaryotic protein were co-opted from, or added to, other functions existing before the emergence of eukaryotes. The nuclear localization signal and negatively charged carboxy-terminus characteristic of eukaryotic pelota-like proteins are absent from the S. solfataricus homolog, and hence may be indicative of the acquired eukaryotic function(s).  相似文献   

14.
Hyperthermophilic Archaea and Bacteria with optimal growth temperatures between 80 and 110°C have been isolated from geo- and hydro-thermally heated terrestrial and submarine environments. 16S rRNA sequence comparisons indicate great phylogenetic diversity among the 23 different genera represented. Hyperthermophiles consist of anaerobic and aerobic chemolithoautotrophs and heterotrophs growing at neutral or acidic pH. Their outstanding heat resistance makes them as interesting objects for basic research as for biotechnology in the future.The authors (alphabetical order) are with the Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, 93053 Regensburg, Germany  相似文献   

15.
Only in the last decade have microorganisms been discovered which grow near or above 100°C. The enzymes that are formed by these extremely thermophilic (growth temperature 65 to 85°C) and hyperthermophilic (growth temperature 85 to 110°C) microorganisms are of great interest. This review covers the extracellular and intracellular enzymes of these exotic microorganisms that have recently been described. Polymer-hydrolysing enzymes, such as amylolytic, cellulolytic, hemicellulolytic and proteolytic enzymes, will be discussed. In addition, the properties of the intracellular enzymes involved in carbohydrate and amino-acid metabolism and DNA-binding and chaperones and chaperone-like proteins from hyperthermophiles are described. Due to the unusual properties of these heat-stable enzymes, they are expected to fill the gap between biological and chemical processes.The authors are with the Technical University Hamburg-Harburg, Institute of Biotechnology, Department of Technical Microbiology, Denickestrasse 15, D-21071 Hamburg, Germany  相似文献   

16.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

17.
We examined short- and long-term desiccation tolerance of 31 strains of thermophilic and hyperthermophilic Archaea and thermophilic phylogenetically deep-branching Bacteria. Seventeen organisms showed a significant high ability to withstand desiccation. The desiccation tolerance turned out to be species-specific and was influenced by several parameters such as storage temperature, pH, substrate or presence of oxygen. All organisms showed a higher survival rate at low storage temperatures (−20°C or below) than at room temperature. Anaerobic and microaerophilic strains are influenced negatively in their survival by the presence of oxygen during desiccation and storage. The desiccation tolerance of Sulfolobales strains is co-influenced by the pH and the substrate of the pre-culture. The distribution of desiccation tolerance in the phylogenetic tree of life is not domain specific. Surprisingly, there are dramatic differences in desiccation tolerance among organisms from the same order and even from closely related strains of the same genus. Our results show that tolerance of vegetative cells to desiccation is a common phenomenon of thermophilic and hyperthermophilic microorganisms although they originated from quite different non-arid habitats like boiling acidic springs or black smoker chimneys.  相似文献   

18.
19.
Two straight-chain fatty alcohols (n-hexadecanol and n-octadecanol) were found in the neutral lipid fraction extracted from Pyrococcus furiosus cells. They were identified by thin-layer and gas-liquid chromatography, mass and infrared spectra, and chemical modification. The fatty alcohols accounted for 54% of the neutral lipid of the cell. Received: March 8, 2000 / Accepted: May 8, 2000  相似文献   

20.
The hyperthermophilic bacterium Thermotoga maritima is capable of gaining metabolic energy utilizing xylan. XynA, one of the corresponding hydrolases required for its degradation, is a 120-kDa endo-1,4-D-xylanase exhibiting high intrinsic stability and a temperature optimum approximately 90 degrees C. Sequence alignments with other xylanases suggest the enzyme to consist of five domains. The C-terminal part of XynA was previously shown to be responsible for cellulose binding (Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multi-domain 120 kDa Xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431-444). In order to characterize the domain organization and the stability of XynA and its C-terminal cellulose-binding domain (CBD), the two separate proteins were expressed in Escherichia coli. CBD, because of its instability in its ligand-free form, was expressed as a glutathione S-transferase fusion protein with a specific thrombin cleavage site as linker. XynA and CBD were compared regarding their hydrodynamic and spectral properties. As taken from analytical ultracentrifugation and gel permeation chromatography, both are monomers with 116 and 22 kDa molecular masses, respectively. In the presence of glucose as a ligand, CBD shows high intrinsic stability. Denaturation/renaturation experiments with isolated CBD yield > 80% renaturation, indicating that the domain folds independently. Making use of fluorescence emission and far-UV circular dichroism in order to characterize protein stability, guanidine-induced unfolding of XynA leads to biphasic transitions, with half-concentrations c1/2 (GdmCl) approximately 4 M and > 5 M, in accordance with the extreme thermal stability. At acid pH, XynA exhibits increased stability, indicated by a shift of the second guanidine-transition from 5 to 7 M GdmCl. This can be tentatively attributed to the cellulose-binding domain. Differences in the transition profiles monitored by fluorescence emission and dichroic absorption indicate multi-state behavior of XynA. In the case of CBD, a temperature-induced increase in negative ellipticity at 217 nm is caused by alterations in the environment of aromatic residues that contribute to the far-UV CD in the native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号