首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual bumblebees were trained to choose between rewarded target flowers and non-rewarded distractor flowers in a controlled illumination laboratory. Bees learnt to discriminate similar colours, but with smaller colour distances the frequency of errors increased. This indicates that pollen transfer might occur between flowers with similar colours, even if these colours are distinguishable. The effect of similar colours on reducing foraging accuracy of bees is evident for colour distances high above discrimination threshold, which explains previous field observations showing that bees do not exhibit complete flower constancy unless flower colour between species is distinct. Bees tested in spectrally different illumination conditions experienced a significant decrease in their ability to discriminate between similar colours. The extent to which this happens differs in different areas of colour space, which is consistent with a von Kries-type model of colour constancy. We find that it would be beneficial for plant species to have highly distinctive colour signals to overcome limitations on the bees performance in reliably judging differences between similar colours. An exception to this finding was flowers that varied in shape, in which case bees used this cue to compensate for inaccuracies of colour vision.  相似文献   

2.
Alpine flowers face multiple challenges in terms of abiotic and biotic factors, some of which may result in selection for certain colours at increasing altitude, in particular the changing pollinator species composition, which tends to move from bee-dominated at lower elevations to fly-dominated in high-alpine regions. To evaluate whether growing at altitude—and the associated change in the dominant pollinator groups present—has an effect on the colour of flowers, we analysed data collected from the Dovrefjell National Park in Norway. Unlike previous studies, however, we considered the flower colours according to ecologically relevant models of bee and fly colour vision and also their physical spectral properties independently of any colour vision system, rather than merely looking at human colour categories. The shift from bee to fly pollination with elevation might, according to the pollination syndrome hypothesis, lead to the prediction that flower colours should shift from more bee-blue and UV-blue flowers (blue/violet to humans, i.e. colours traditionally associated with large bee pollinators) at low elevations to more bee-blue-green and green (yellow and white to humans—colours often linked to fly pollination) flowers at higher altitude. However, although there was a slight increase in bee-blue-green flowers and a decrease in bee-blue flowers with increasing elevation, there were no statistically significant effects of altitude on flower colour as seen either by bees or by flies. Although flower colour is known to be constrained by evolutionary history, in this sample we also did not find evidence that phylogeny and elevation interact to determine flower colours in alpine areas. Handling editor: Neal Williams  相似文献   

3.
Flower colour is a major advertisement signal of zoophilous plants for pollinators. Bees, the main pollinators, exhibit innate colour preferences, which have often been attributed to only one single floral colour, though most flowers display a pattern of two or several colours. The existing studies of floral colour patterns are mostly qualitative studies. Using a model of bee colour vision we quantitatively investigate two questions: whether or not component colours of floral colour patterns may mimic pollen signals, and whether or not bumblebees exhibit innate preferences for distinct parameters of naturally existing floral colour patterns. We analysed the spectral reflectances of 162 plant species with multicoloured flowers and inflorescences, distiniguishing between inner and outer colours of floral colour patterns irrespective of the particular structures so coloured.We found that:– The inner colour of radially symmetrical flowers and inflorescences and of zygomorphic flowers appears less diverse to bees than the peripheral colour.– The inner colour of most radial flowers and inflorescences as well as the inner colour of a large number of non-related zygomorphic flowers appears to bees to be very similar to that of pollen.– Bumblebees (Bombus terrestris) exhibit innate preferences for two-coloured over single-coloured dummy flowers in a spontaneous choice test.– Bumblebees exhibit innate preferences for dummy flowers with a large over those with a small centre area.– Bumblebees exhibit innate preferences for dummy flowers with a centre colour similar to that of pollen over those with another centre colour.Our findings support the hypotheses that the inner component of floral colour patterns could be interpreted as a generalised and little recognised form of mimicry of the colour of visually displayed pollen, that bumblebees exhibit innate preferences regarding colour and size parameters of floral colour patterns, and that these correspond to visually displayed pollen. These findings together suggest a prominent role of floral colour patterns in advertisement to and guidance of naive flower visitors.  相似文献   

4.
The spectral reflectance of differently coloured Australian native plant flowers and foliage was measured and plotted in a colour triangle to represent the colour space of the honeybee. Spectral variations in illumination are shown to significantly change plant colours for bee vision without colour constancy. A model of chromatic adaptation based upon the von Kries coefficient law shows a reduction in plant colour shift, with the degree of correction depending upon position in colour space. A set of artificial reflectances is used to map relative colour shift caused by spectrally variable illumination for the entire colour space of the honeybee. The rarity of some flower colours in nature shows a correlation to a larger colour shift for these colours when illuminated by spectrally variable radiation. The model of chromatic adaptation is applied to illuminations used in a behavioural study on honeybee colour constancy by Neumeyer 1981. Surface colours used by Neumeyer are plotted in colour space for the various illuminations. The results show that an illumination-dependent colour shift correlates to a decrease in the frequency of bees correctly choosing a colour to which it was trained. Accepted: 23 February 1998  相似文献   

5.
Free flying honeybees were tested outdoors on blue–white and blue–yellow dimorphic artificial flower patches to examine the influence of reward difference, flower handling‐time difference and flower colour choice on foraging decisions. We employed different flower‐well depths to vary handling times (costs), and differences in sucrose molarity to vary reward quality. Tests were performed with 2 and 6 μl rewards to vary quantity. We show that when handling time is correlated with flower‐colour morphs on a pedicellate artificial flower patch, a honeybee's foraging behaviour is dependent on the flower colours used in the choice tests. This supports a honeybee foraging model where constraints are a significant factor in decision making. Bees visiting blue–yellow flower patches exhibited flower constancy to colour, where they restricted most visits to a single flower colour, some bees to blue and others to yellow, irrespective of handing time differences. When offered a choice of equally rewarding blue or white flowers, bees were not constrained by flower colour and chose to visit flowers with a lower handling time. When reward molarity varied with well depth between blue and white flowers, foragers chose shallow‐well flowers (short‐handling time) with a smaller net harvest rate over deep‐well flowers (long‐handling time) with a greater net harvest rate. Results using the blue–white dimorphic flower patch suggest that when foraging options simultaneously involve reward and handling‐time choices, honeybee forager behaviour is inconsistent with an absolute method of evaluating profit.  相似文献   

6.
Bombus terrestris , a typical pollinating insect species, was offered artificial flowers of two different corolla colours with the same sucrose solution reward in an array. Common colours were significantly preferred, and the strength of the frequency-dependent response increased as a result of learning. There were also frequency-independent biases towards blue flowers, probably because blue flowers appeared more conspicuous to bumblebees than yellow flowers, and the degree of preference for blue was greater when flowers had low nectar rewards. Flower-to-flower movements by individual bumblebees between flowers were non-random, were biased to movements within the same flower colour, and were also dependent on morph frequency. The mechanisms governing flower selection in bumblebees are discussed. Pollinators foraging similarly in a natural situation would induce positive frequency-dependent selection, assortative mating, and directional selection on different corolla colour morphs of the plant population being visited, resulting in stabilizing selection for a single flower colour.  相似文献   

7.
Colour preferences of flower-naive honeybees   总被引:1,自引:0,他引:1  
Flower-naive honeybees Apis mellifera L. flying in an enclosure were tested for their colour preferences. Bees were rewarded once on an achromatic (grey, aluminium or hardboard), or on a chromatic (ultraviolet) disk. Since naive bees never alighted on colour stimuli alone, a scent was given in combination with colour. Their landings on twelve colour stimuli were recorded. Results after one reward (“first test”) were analysed separately from those obtained after few rewards (“late tests”).
  1. After pre-training to achromatic signals, bees preferred, in the first test, bee-uv-blue and bee-green colours. With increasing experience, the original preference pattern persisted but the choice of bee-blue and bee-green colours increased.
  2. Neither colour distance of the test stimuli to the background or to the pre-training signal, nor their intensity, nor their green contrast, accounted for the colour choice of bees. Choices reflected innate preferences and were only associated with stimulus hue.
  3. Bees learned very quickly the pre-trained chromatic stimulus, the original colour preferences being thus erased.
  4. Colour preferences were strongly correlated with flower colour and its associated nectar reward, as measured in 154 flower species.
  5. Colour preferences also resemble the wavelength dependence of colour learning demonstrated in experienced bees.
  相似文献   

8.
The performance of individual bumblebees at colour discrimination tasks was tested in a controlled laboratory environment. Bees were trained to discriminate between rewarded target colours and differently coloured distractors, and then tested in non-rewarded foraging bouts. For the discrimination of large colour distances bees made relatively fast decisions and selected target colours with a high degree of accuracy, but for the discrimination of smaller colour distances the accuracy decreased and the bees response times to find correct flowers significantly increased. For small colour distances there was also significant linear correlations between accuracy and response time for the individual bees. The results show both between task and within task speed-accuracy tradeoffs in bees, which suggests the possibility of a sophisticated and dynamic decision-making process.  相似文献   

9.
Flower visitors learn to avoid food-deceptive plants and to prefer rewarding ones by associating floral cues to rewards. As co-occurring plant species have different phenologies, cue-reward associations vary over time. It is not known how these variations affect flower visitors’ foraging costs and learning. We trained bumblebees of two colonies to forage in a community of deceptive and rewarding artificial inflorescences whose flower colours were either similar or dissimilar. We then modified the community composition by turning the rewarding inflorescences into unrewarding and adding rewarding inflorescences of a novel flower colour. In the short term, bees trained to similar rather than dissimilar inflorescences experienced higher costs of foraging (decreased foraging speed and accuracy) in the novel community. The colonies differed in their speed-accuracy trade-off. In the longer term, bees adapted their foraging behaviour to the novel community composition by increasingly visiting the novel rewarding inflorescences.  相似文献   

10.
The behaviour of bumblebee workers foraging on arrays of artificial flowers of two colour morphs was observed. Experiments were conducted on arrays of varying morph frequencies and at three different total flower densities. Bumblebees consistently showed a preference for the commonest colour morph, and this behaviour was not significantly affected by changing density. In contrast, frequency-independent preferences changed significantly with density. At low densities, there was a strong bias towards the more conspicuous colour, whereas at higher densities there was no overall colour bias. Flight distances between flowers decreased significantly at high density. Bumblebees also visited flowers of similar colours sequentially, but this behaviour was not density-dependent. It is suggested that as densities increase, there is an increased probability that bumblebees detect yellow flowers, which were probably less conspicuous compared with blue flowers, and that this might be caused by changes in flight speed with flight distance. Where there is a positive relationship between pollinator visitation and the relative fitness of a floral morph, the observed behaviour would induce positive frequency-dependent selection on a plant population with two corolla colour morphs on which the bumblebees were foraging, which would result in stabilizing selection for a single corolla colour, irrespective of density. There was no indication that rare colour morphs would be preferred at high density. The probability of different corolla colour morphs going to fixation would, however, be affected by density.  相似文献   

11.
进化历史和气候条件共同影响中国木本植物花色的分布 本研究以中国木本植物为研究对象,主要探讨两个问题:(1)不同生活型物种花色组成的差异;(2)生物地理区、进化年龄和气候条件对不同花色地理分布格局的影响。研究使用7673种木本植物的物种分布数据和花色信息(分为白色、红色、黄色、黄绿色、绿色和蓝紫色),并结合属级系统进化树来比较不同生活型(包括灌木、乔木和藤本)物种花色组成的差异,分析不同生物地理区、进化年龄和现代气候对花色地理格局的影响。研究结果表明,与乔木和藤本植物相比,灌木具有更高比例 的由花青素着色的红色花和蓝紫色花物种。中国木本植物的花色地理格局受到区域效应和现代气候(尤其是降水和UVB辐射)的共同影响。倾向于蜂媒传粉的黄色花和蓝紫色花物种和由花青素着色、耐环境胁迫的红色花和蓝紫色花物种比例在中国西北部地区更高。绿色花物种的进化起源更早,但进化时间对花色地理格局的解释力很弱。这些结果说明中国木本植物花色的地理格局受到进化历史和现代环境的共同影响。  相似文献   

12.
An apparent predominance of plant taxa with pale flowers in the alpine floras of Australia and New Zealand may be due to the prevalence of insects, such as flies, that prefer pale colours and the absence of other types of potential pollinators that are attracted to bright colours such as social bees and birds. In this study, the diversity of flower colours, and the preference of insects for different colours were examined for the largest contiguous alpine area in Australia, around Mt Kosciuszko. Out of an alpine flora of 204 taxa, 127 species were found to have large showy flowers. The most common flower colour among these taxa was white (53.5%), then yellow (21.3%), followed by pink (6.3%), and cream (6.3%). Only a handful of taxa had red, blue, brown, green, orange or purple flowers. When the colour preference of insects was tested using five different coloured traps (white, yellow, orange, red and purple), the most successful traps were white then yellow, with these two colours accounting for 66% of all individual insects collected. Diptera were the most common insects caught (576 insects greater than 4 mm in length, 31 morphotaxa) showing an apparent preference for white and yellow coloured traps over others. Therefore, the results add some support to the proposition that the 'white' flora of the Australian Alps may be associated with the colour preference of flies, which have previously been found to be the most common type of pollinators in the Kosciuszko alpine zone.  相似文献   

13.
Freshly emerged flower visitors exhibit colour preferences prior to individual experience with flowers. The understanding of innate colour preferences in flower visitors requires a detailed analysis, as, on the one hand, colour is a multiple-signal stimulus, and, on the other hand, flower visits include a sequence of behavioural reactions each of which can be driven by a preferential behaviour. Behavioural reactions, such as the distant approach, the close-range orientation, the landing, and the extension of mouthparts can be triggered by colour stimuli. The physiological limitations of spectral sensitivity, the neuro-sensory filters, and the animals' different abilities to make use of visual information such as brightness perception, wavelength-specific behaviour and colour vision shape colour preferences. Besides these receiverbased factors, there are restrictions of flower colouration due to sender-based factors such as the absorption properties of floral pigments and the dual function of flower colours triggering both innate and learned behaviour. Recordings of the spectral reflection of coloured objects, which trigger innate colour preferences, provide an objective measure of the colour stimuli. Weighting the spectral reflection of coloured objects by the spectral composition of the ambient light and the spectral sensitivity of the flower visitors' photoreceptors allows the calculation of the effective stimuli. Perceptual dimensions are known for only a few taxa of flower visitors.  相似文献   

14.
Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations.Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs.Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs.Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea.  相似文献   

15.
Flowering plants in Australia have been geographically isolated for more than 34 million years. In the Northern Hemisphere, previous work has revealed a close fit between the optimal discrimination capabilities of hymenopteran pollinators and the flower colours that have most frequently evolved. We collected spectral data from 111 Australian native flowers and tested signal appearance considering the colour discrimination capabilities of potentially important pollinators. The highest frequency of flower reflectance curves is consistent with data reported for the Northern Hemisphere. The subsequent mapping of Australian flower reflectances into a bee colour space reveals a very similar distribution of flower colour evolution to the Northern Hemisphere. Thus, flowering plants in Australia are likely to have independently evolved spectral signals that maximize colour discrimination by hymenoptera. Moreover, we found that the degree of variability in flower coloration for particular angiosperm species matched the range of reflectance colours that can only be discriminated by bees that have experienced differential conditioning. This observation suggests a requirement for plasticity in the nervous systems of pollinators to allow generalization of flowers of the same species while overcoming the possible presence of non-rewarding flower mimics.  相似文献   

16.
By working with very simple images, a number of different visual cues used by the honeybee have been described over the past decades. In most of the work, the bees had no control over the choice of the images, and it was not clear whether they learned the rewarded pattern or the difference between two images. Preferences were known to exist when untrained bees selected one pattern from a variety of them, but because the preferences of the bees were ignored, it was not possible to understand how natural images displaying several cues were detected. The preferences were also essential to make a computer model of the visual system. Therefore experiments were devised to show the order of preference for the known cues in the training situation. Freely flying bees were trained to discriminate between a rewarded target with one pattern on the left side and a different one on the right, versus a white or neutral target. This arrangement gave the bees a choice of what to learn. Tests showed that in some cases they learned two or three cues simultaneously; in other cases the bees learned one, or they preferred to avoid the unrewarded target. By testing with different combinations of patterns, it was possible to put the cues into an order of preference. Of the known cues, loosely or tightly attached to eye coordinates, a black or blue spot was the most preferred, followed by strong modulation caused by edges, the orientation of parallel bars, six equally spaced spokes, a clean white target, and then a square cross and a ring. A patch of blue colour was preferred to yellow.  相似文献   

17.
18.
Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees’ ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.  相似文献   

19.
Due to their long‐distance migration routes and high longevity, monarch butterflies (Danaus plexippus) are likely to benefit from learning how to discriminate and remember suitable feeding resources. In this study, we assessed monarchs’ abilities to track changing nectar sources over time and to retain learned information presented in two conditioning schedules. Non‐preferred (blue and red) and preferred (yellow) artificial flowers were concomitantly offered to monarchs in a three‐phase experiment. In each phase, flowers of only one color contained sucrose solution, while the others contained water. The rewarding color was changed in each phase. Instantaneous observations were made to assess butterfly visits to each color during each phase; continuous observations over the first 90 min of a new phase allowed us to look in more detail at the transition process. Overall, monarchs tracked sucrose availability, visiting the rewarding flowers more often than the unrewarding ones, regardless of innate preferences. However, butterflies reverted to innate color preferences when the newly rewarding color was different from the initial trained color. In a second experiment, memory decay was compared for butterflies trained according to two schedules: ‘single training’ (sucrose solution in red vs. water in blue artificial flowers in one 15‐min session per day) or ‘intermittent training’ (as above, but in two 7.5‐min sessions per day). Afterwards, butterflies were tested on alternate days for a week in arrays containing unrewarding models of both colors. Following either training schedule, memory persisted for at least 3 d after reinforcement ceased. Our findings reveal that monarchs are able to change their feeding responses according to the flowers’ reward status despite innate preferences, as well as to retain flower information for about half a week regardless of the conditioning dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号