首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

2.
To investigate the folding behavior of amyloidogenic proteins under extreme temperatures, the kinetics of fibrillation and accompanying secondary structure transitions of bovine insulin were studied for temperatures ranging up to 140 degrees C. The presence of extreme heat stress had traditionally been associated with irreversible denaturation of protein while the initial steps of such a denaturation process may be common with a fibril formation pathway of amyloidogenic proteins. The present work demonstrates the ability of insulin to form amyloid fibrils at above 100 degrees C. Amyloid formation was gradually replaced by random coil generation after approximately 80 degrees C until no amyloid was detected at 140 degrees C. The morphology of insulin amyloid fibrils underwent sharp changes with increasing the temperature. The dependence of amyloid formation rate on incubation temperature followed non-Arrhenius kinetics, which is explained by temperature-dependent enthalpy change for amyloid formation. The intermediate stage of amyloid formation and random coil generation consisted of a partially folded intermediate common to both pathways. The fully unfolded monomers in random coil conformation showed partial reversibility through this intermediate by reverting back to the amyloid pathway when formed at 140 degrees C and incubated at 100 degrees C. This study highlights the non-Arrhenius kinetics of amyloid fibrillation under extreme temperatures, and elucidates its intermediate stage common with random coil formation.  相似文献   

3.
Amyloid plaques composed of the peptide Abeta are an integral part of Alzheimer's disease (AD) pathogenesis. We have modeled the process of amyloid plaque growth by monitoring the deposition of soluble Abeta onto amyloid in AD brain tissue or synthetic amyloid fibrils and show that it is mediated by two distinct kinetic processes. In the first phase, "dock", Abeta addition to the amyloid template is fully reversible (dissociation t(1/2) approximately 10 min), while in the second phase, "lock", the deposited peptide becomes irreversibly associated (dissociation t(1/2) > 1000 min) with the template in a time-dependent manner. The most recently deposited peptide dissociates first while Abeta previously deposited becomes irreversibly "locked" onto the template. Thus, the transition from monomer to neurotoxic amyloid is mediated by interaction with the template, a mechanism that has also been proposed for the prion diseases. Interestingly, two Abeta peptides bearing primary sequence alterations implicated in heritable Abeta amyloidoses displayed faster lock-phase kinetics than wild-type Abeta. Inhibiting the initial weak docking interaction between depositing Abeta and the template is a viable therapeutic target to prevent the critical conformational transition in the conversion of Abeta((solution)) to Abeta((amyloid)) and thus prevent stable amyloid accumulation. While thermodynamics suggest that inhibiting amyloid assembly would be difficult, the present study illustrates that the protein misfolding diseases are kinetically vulnerable to intervention.  相似文献   

4.
Amyloid fibrils have potential as bionanomaterials. A bottleneck in their commercial use is the cost of the highly purified protein typically needed as a starting material. Thus, an understanding of the role of heterogeneity in the mixtures from which amyloid fibrils are formed may inform production of these structures from readily available impure starting materials. Insulin, a very well understood amyloid-forming protein, was modified by various reagents to explore whether amyloid fibrils could still form from a heterogeneous mixture of insulin derivatives. Aggregates were characterized by thioflavin T fluorescence and transmission electron microscopy. Using acetylation, reduction carboxymethylation, reduction pyridylethylation, trypsin digestion and chymotrypsin digestion, it was shown that amyloid fibrils can form from heterogeneous mixtures of modified insulin. The modifications changed both the rate of reaction and the yield of the final product, but led to fibrillar structures, some with interesting morphologies. Well defined, long, unbranched fibrils were observed in the crude reduced carboxymethylated insulin mixture and the crude reduced pyridylethylated insulin revealed the formation of "wavy" fibrils, compared with the straighter native insulin amyloid fibrils. Although trypsin digestion inhibited fibrils formation, chymotrypsin digestion of insulin produced a mixture of long and short fibrils under the same conditions. We conclude that amyloid fibrils may be successfully formed from heterogeneous mixtures and, further, that chemical modification may provide a simple means of manipulating protein fibril assembly for use in bionanotechnological applications, enabling some design of overall morphology in the bottom-up assembly of higher order protein structures from amyloid fibrils.  相似文献   

5.
6.
In this review we analyze the main works on amyloid formation of insulin. There are many environmental factors affecting the formation of insulin amyloid fibrils (and other amyloidogenic proteins) such as: protein concentration, pH, ionic strength of solution, medium composition (anions, cations), presence of denaturants (urea, guanidine chloride) or stabilizers (saccharose), temperature regime, agitation. Since polymorphism is potentially crucial for human diseases and may underlie the natural variability of some amyloid diseases, in this review we focus attention on polymorphism that is an important biophysical difference between native protein folding suggesting correspondence between the amino acid sequence and unique folding state, and formation of amyloid fibrils, when the same amino acid sequence can form amyloid fibrils of different morphology. At present, according to the literature data, we can choose three ways of polymerization of insulin molecules depending on the nucleus size. The first suggests that fibrillogenesis can occur through assembly of insulin monomers. The second suggests that precursors of fibrils are dimers, and the third assumes that precursors of fibrils are oligomers. Additional experimental works and new methods of investigation and assessment of results are needed to clarify the general picture of insulin amyloid formation.  相似文献   

7.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   

8.
The presence of 20% (v/v) ethanol triggers growth of insulin amyloid with distinct infrared spectroscopic features, compared with the fibrils obtained under ambient conditions. Here we report that the two insulin amyloid types behave in the prion strain-like manner regarding seeding specificity and ability of the self-propagating conformational template to overrule unfavorable environmental factors and maintain the initial folding pattern. The type of the original seed has been shown to prevail over cosolvent effects and determines spectral position and width of the amide I' infrared band of the heterogeneously seeded amyloid. These findings imply that "strains" may be a common generic trait of amyloids.  相似文献   

9.
Amyloid fibrils are fibrillar aggregates of denatured proteins associated with a large number of amyloidoses. The formation of amyloid fibrils has been considered to occur by nucleation and elongation. Real-time imaging of the elongation as well as linear morphology of amyloid fibrils suggests that all elongation events occur at the growing ends of fibrils. On the other hand, we suggested that monomers also bind to the lateral sides of preformed fibrils during the seed-dependent elongation, diffuse to the growing ends, and finally make further conformation changes to the mature amyloid fibrils. To examine lateral binding during the elongation of fibrils, we used islet amyloid polypeptide (IAPP), which has been associated with type II diabetes, and prepared IAPP modified with the fluorescence dye, Alexa532. By monitoring the elongation process with amyloid specific thioflavin T and Alexa532 fluorescence, we obtained overlapping images of the two fluorescence probes, which indicated lateral binding. These results are similar to the surface diffusion-dependent growth of crystals, further supporting the similarities between amyloid fibrillation and the crystallization of substances.  相似文献   

10.
Abstract

Fluorescence spectroscopy was used to study the ability of dye 7519 to follow the transition of monomeric insulin into fibrils and applicability of the dye to the insulin aggregation inhibition assay. The commercially available classic amyloid stain, thioflavin T, was used as the reference dye. For selecting potential inhibitors, the QSAR approach was applied. Dye 7519 appeared to be suitable for monitoring insulin aggregation into fibrils in vitro. The properties of the dye allowed us to test it as a potential probe in the screening assay of potential inhibitors of insulin fibrillization. One hundred forty-four flavonoids were tested as potential inhibitors of amyloid fibril formation using the quantitative structure activity relationship approach. Among them, 10 candidates with high indexes of inhibition were selected for tests in vitro using dye 7519 and the reference amyloid dye thioflavine T. Using dye 7519 fluorescence, we found that two compounds had inhibitory effects on insulin amyloid formation. These results agree with inhibition data using the thioflavine T assay. Our studies demonstrated that the fluorescent cyanine dye 7519 is a sensitive probe for quantitative detection of insulin amyloid formation and can be applied to screen agents capable of affecting aggregation of amyloid proteins.  相似文献   

11.
Heldt CL  Zhang S  Belfort G 《Proteins》2011,79(1):92-98
Amyloids are insoluble, fibrous proteins formed through the aggregation of misfolded proteins. They accumulate in the tissue of individuals with degenerative diseases, such as Parkinson's and Alzheimer's. The purpose of this study was to determine whether fibril growth from an initial model fibril seed is unidirectional or bidirectional. The prevailing theory on amyloid formation is that a symmetric fibril elongates equally from both ends. This study provides evidence to the contrary; the process occurs predominately unidirectionally, demonstrating that amyloid fibrils may be asymmetric and propagate mostly in one direction. Alexa Fluor 568 labeled insulin fibrils were seeded into a native insulin solution and allowed to elongate at 65°C while the kinetics of fibril growth was monitored. The resulting elongated fibrils were labeled with thioflavin-T, and the fluorescent images of the fibrils show that a majority of the elongated fibrils propagated along only one end of the seed, with the remaining labeled fibrils having bidirectional elongation or no elongation. Using a crystallographic model, we offer a structural explanation for asymmetric growth of the insulin fibrils. Thus, instead of the current view that fibrils grow symmetrically from both ends of the fibril, this is the first evidence that insulin amyloid fibrils formed in solution are asymmetric and appear to grow from only one end.  相似文献   

12.
Structural and functional characteristics of the yeast red pigment (product of polymerization of N1-(β-D-ribofuranosyl)-5-aminoimidazole), isolated from ade1 mutant cells of Saccharomyces cerevisiae and its deribosylated derivatives (obtained by acid hydrolysis) and its synthetic pigment analogue (product of polymerization of N1-methyl-5-aminoimidazole in vitro) were obtained. Products of in vitro polymerization were identified using mass spectrometry. The ability of these pigments to inhibit amyloid formation using insulin fibrils was compared. All the studied compounds are able to interact with amyloids and inhibit their growth. Electron and atomic force microscopy revealed a common feature inherent in the insulin fibrils formed in the presence of these compounds—they are merged into conglomerates more stable and resistant to the effects of ultrasound than are insulin aggregates grown without pigments. We suggest that all these compounds can cause coalescence of fibrils partially blocking the loose ends and, thereby, inhibit attachment of monomers and formation of new fibrils.  相似文献   

13.
The formation and growth of insoluble amyloid deposits composed primarily of the human beta-amyloid peptide (A beta) in brain is an essentially invariant feature of Alzheimer's disease (AD) and is widely believed to contribute to the progressive neurodegeneration of the disorder. To probe the specificity of amyloid formation and growth, we synthesized and examined the self-assembly of D- and L-stereoisomers of A beta in vitro. While both enantiomers formed insoluble aggregates at similar rates with amyloid-like fibrillar morphology, deposition of soluble A beta peptide onto preexisting A beta aggregates was stereospecific. Although the L-peptide deposited readily onto immobilized L-A beta aggregates with first-order kinetic dependence on soluble peptide concentration, essentially no association between the D-peptide and L-template was observed. Similarly, the D-peptide deposited with first-order kinetics onto a D-A beta aggregate template but did not deposit onto a similar template composed of aggregates of the L-enantiomer. Furthermore, although the L-A beta isomer deposited onto authentic AD amyloid in preparations of unfixed AD brain, no focal association between the D-peptide and brain amyloid was detected. These results establish that deposition of soluble A beta onto preexisting amyloid template is stereospecific, likely involving direct docking interactions between peptide backbone and/or side chains rather than simple hydrophobic association.  相似文献   

14.
Amyloid fibrils have been recognized as having potential in a variety of bionanotechnological applications. However, realization of these applications is constrained by a lack of control over morphology and alignment, both crucial for potential end uses. This article focuses on the use of growth and storage conditions to control the length of amyloid fibrils formed from bovine insulin, with length distributions constructed from transmission electron microscopy (TEM) images. Growth temperature, pH, protein concentration, and storage conditions were examined and were seen to offer a range of conditions that favor different length distribution. The use of amyloid fibrils as nanowires is one area where control of fibril dimensions is desirable, for experimental setup and endpoint applications. The conductive properties of fibrils formed from bovine insulin are presented, with these insulin fibrils being shown to have high resistivity in their unmodified state, with current values in the nanoamp range. These low current values can be increased via modification, or the fibrils used in their native state in applications where low current values are desirable. These findings, coupled with the ability to predict and select for various insulin amyloid fibril dimensions, enhances their utility as nanomaterials.  相似文献   

15.
Amyloid proteins are converted from their native‐fold to long β‐sheet‐rich fibrils in a typical sigmoidal time‐dependent protein aggregation curve. This reaction process from monomer or dimer to oligomer to nuclei and then to fibrils is the subject of intense study. The main results of this work are based on the use of a well‐studied model amyloid protein, insulin, which has been used in vitro by others. Nine osmolyte molecules, added during the protein aggregation process for the production of amyloid fibrils, slow‐down or speed up the process depending on the molecular structure of each osmolyte. Of these, all stabilizing osmolytes (sugars) slow down the aggregation process in the following order: tri > di > monosaccharides, whereas destabilizing osmolytes (urea, guanidium hydrochloride) speed up the aggregation process in a predictable way that fits the trend of all osmolytes. With respect to kinetics, we illustrate, by adapting our earlier reaction model to the insulin system, that the intermediates (trimers, tetramers, pentamers, etc.) are at very low concentrations and that nucleation is orders of magnitude slower than fibril growth. The results are then collated into a cogent explanation using the preferential exclusion and accumulation of osmolytes away from and at the protein surface during nucleation, respectively. Both the heat of solution and the neutral molecular surface area of the osmolytes correlate linearly with two fitting parameters of the kinetic rate model, that is, the lag time and the nucleation rate prior to fibril formation. These kinetic and thermodynamic results support the preferential exclusion model and the existence of oligomers including nuclei and larger structures that could induce toxicity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
The authors describe the interaction of biological nanostructures formed by β2‐microglobulin amyloid fibrils with three‐dimensional silicon microstructures consisting in periodic arrays of vertical silicon walls (≈3 μm‐thick) separated by 50 μm‐deep air gaps (≈5 μm‐wide). These structures are of great interest from a biological point of view since they well mimic the interstitial environment typical of amyloid deposition in vivo. Moreover, they behave as hybrid photonic crystals, potentially applicable as optical transducers for label‐free detection of the kinetics of amyloid fibrils formation. Fluorescence and atomic force microscopy (AFM) show that a uniform distribution of amyloid fibrils is achieved when fibrillogenesis occurs directly on silicon. The high resolution AFM images also demonstrate that amyloid fibrils grown on silicon are characterized by the same fine structure typically ensured by fibrillogenesis in solution. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Different low molecular mass ligands have been used to identify amyloid deposits. Among these markers, the dyes Thioflavin T and Congo Red interact specifically with the beta-sheet structure arranged in a cross-beta conformation, which is characteristic of amyloid. However, the molecular details of this interaction remain unknown. When labelled with technetium-99m, the proteinase inhibitor aprotinin has been shown to represent a very important radiopharmaceutical agent for in vivo imaging of extra-abdominal deposition of amyloid in amyloidosis of the immunoglobulin type. However, no information is available as to whether aprotinin binds other types of amyloid fibrils and on the nature and characteristics of the interaction. The present work shows aprotinin binding to insulin, transthyretin, beta-amyloid peptide and immunoglobulin synthetic amyloid fibrils by a specific dot-blot ligand-binding assay. Aprotinin did not bind amorphous precipitates and/or the soluble fibril precursors. A Ka of 2.9 microM-1 for the binding of aprotinin to insulin amyloid fibrils was determined by Scatchard analysis. In competition experiments, analogues such as an aprotinin variant, a spermadhesin and the soybean trypsin inhibitor were tested and results suggest that both aprotinin and the spermadhesin interact with amyloid fibrils through pairing of beta-sheets of the ligands with exposed structures of the same type at the surface of amyloid deposits. An electrostatic component may also be involved in the binding of aprotinin to amyloid fibrils because important differences in binding constants are observed when substitutions V15L17E52 are introduced in aprotinin; on the other hand beta-sheet containing acidic proteins, such as the soybean trypsin inhibitor, are unable to bind amyloid fibrils.  相似文献   

18.
Formation of protein amyloid fibrils consists of a series of intermediates including oligomeric aggregates, proto-fibrillar structures, and finally mature fibrils. Recent studies show higher toxicity for oligomeric and proto-fibrillar intermediates of protein relative to their mature fibrils. Here the kinetic of the insulin amyloid fibrillation was evaluated using a variety of techniques including ThT fluorescence, Congo red absorbance, circular dichroism, and atomic force microscopy (AFM). The solution surface tension changes were attributed to hydrophobic changes in insulin structure and were detected by Du Noüy Ring method. Determination of the surface tension of insulin oligomeric, proto-fibrillar and fibrillar forms indicated that the hydrophobicity of solution is enhanced by the formation of the oligomeric forms of insulin compared to other forms. In order to investigate the toxicity of the different forms of insulin we monitored morphological alterations of the differentiated neuron-like PC12 cells following incubation with native, oligomeric aggregates, proto-fibrillar, and fibrillar forms of insulin. The cell body area, average neurite length, neurite width, number of primary neurites, and percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different forms of insulin. We observed that the oligomeric form of insulin impaired the growth and complexity of PC12 cells compared to other forms. Together our data suggest that the lower surface tension of oligomers and their perturbation affects the morphology of PC12 cells, mainly due to their enhanced hydrophobicity and detergent-like structures.  相似文献   

19.
Sharp JS  Forrest JA  Jones RA 《Biochemistry》2002,41(52):15810-15819
We consider the effects that different lipid surfaces have upon the denaturation and subsequent formation of amyloid fibrils of bovine insulin. The adsorption and unfolding kinetics of insulin being adsorbed onto the different lipid surfaces under denaturing conditions are studied using FTIR ATR spectroscopy and are compared to the bulk solution behavior of the protein. Atomic force microscopy studies are also performed to compare the fibrils growing on the different surfaces. This study shows that both the adsorption and unfolding kinetics of insulin can be described by a sum of exponential processes and that different surfaces behave differently, with respect both to one another and to the bulk protein solution. The proteins adsorbed onto the surfaces are observed to have faster unfolding kinetics than those in the bulk, and the fibril-like structures formed at the surfaces are shown to be different in a number of ways from those found in bulk solution. The beta-sheet content and growth kinetics of the adsorbed proteins also differ from those of the bulk system. An attempt is made to describe the observed behavior in terms of simple physical arguments involving adsorption, unfolding, and aggregation of the proteins.  相似文献   

20.
The assembly of amyloid β-protein to amyloid fibrils is a critical event in Alzheimer's disease. Evidence exists that endocytic pathway abnormalities, including the enlargement of early endosomes, precede the extraneuronal amyloid fibril deposition in the brain. We determined whether endocytic dysfunction potently promotes the assembly of amyloid β-protein on the surface of cultured cells. Blocking the early endocytic pathway by clathrin suppression, inactivation of small GTPases, removal of membrane cholesterol, and Rab5 knockdown did not result in amyloid fibril formation on the cell surface from exogenously added soluble amyloid β-protein. In contrast, blocking the late endocytic pathway by Rab7 suppression markedly induced the amyloid fibril formation in addition to the enlargement of early endosomes. Notably, a monoclonal antibody specific to GM1-ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid, completely blocks the amyloid fibril formation. Our results suggest that late but not early endocytic dysfunction contributes to the amyloid fibril formation by facilitating the generation of amyloid seed in the Alzheimer's brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号