首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors (TLRs) are key mediators of the innate immune response to microbial pathogens. We investigated the role of TLRs in the recognition of Mycobacterium leprae and the significance of TLR2Arg(677)Trp, a recently discovered human polymorphism that is associated with lepromatous leprosy. In mice, TNF-alpha production in response to M. leprae was essentially absent in TLR2-deficient macrophages. Similarly, human TLR2 mediated M. leprae-dependent activation of NF-kappaB in transfected Chinese hamster ovary and human embryonic kidney 293 cells, with enhancement of this signaling in the presence of CD14. In contrast, activation of NF-kappaB by human TLR2Arg(677)Trp was abolished in response to M. leprae and Mycobacterium tuberculosis. The impaired function of this TLR2 variant provides a molecular mechanism for the poor cellular immune response associated with lepromatous leprosy and may have important implications for understanding the pathogenesis of other mycobacterial infections.  相似文献   

2.
Cell surface receptors for molecular chaperones   总被引:2,自引:0,他引:2  
Heat shock proteins are intracellular molecular chaperones. However, extracellular heat shock proteins have recently been shown to mediate a range of powerful effects in inflammatory cells, neuronal cells and immune cells. These effects are transmitted by a number of cell surface receptors including LRP/CD91, CD40, Toll-like receptors, Scavenger receptors and c-type Lectins. However, although extracellular heat shock proteins are products of at least five different gene superfamilies, similar receptor types often trigger their effects. We have assessed heat shock protein binding to the different receptor types with particular regard to its role in tumor immunology. Heat shock protein 70 released from dying tumor cells or injected as part of a vaccine induces a remarkable range of immune effects. This molecular chaperone induces powerful pro-inflammatory signaling cascades leading to the activation of antigen presenting cells. In addition, heat shock protein 70 is able to transport antigenic peptides as cargo from the tumor cell cytoplasm across the membranes of antigen presenting cells and deliver them to major histocompatability class I molecules, a process known as "cross-presentation". The resulting major histocompatability class I-peptide complexes are then displayed on the cell surface by antigen presenting cells, leading to activation of cytotoxic T lymphocytes and tumor cell killing. Understanding how heat shock protein-receptor binding orchestrates individual components of tumor immunity will permit enhanced design of molecular chaperone based immunotherapy.  相似文献   

3.
Poxviruses encode proteins that suppress host immune responses, including secreted decoy receptors for pro-inflammatory cytokines such as interleukin-1 (IL-1) and the vaccinia virus proteins A46R and A52R that inhibit intracellular signaling by members of the IL-1 receptor (IL-1R) and Toll-like receptor (TLR) family. In vivo, the TLRs mediate the innate immune response by serving as pathogen recognition receptors, whose oligomerized intracellular Toll/IL-1 receptor (TIR) domains can initiate innate immune signaling. A family of TIR domain-containing adapter molecules transduces signals from engaged receptors that ultimately activate NF-kappaB and/or interferon regulatory factor 3 (IRF3) to induce pro-inflammatory cytokines. Data base searches detected a significant similarity between the N1L protein of vaccinia virus and A52R, a poxvirus inhibitor of TIR signaling. Compared with other poxvirus virulence factors, the poxvirus N1L protein strongly affects virulence in vivo; however, the precise target of N1L was previously unknown. Here we show that N1L suppresses NF-kappaB activation following engagement of Toll/IL-1 receptors, tumor necrosis factor receptors, and lymphotoxin receptors. N1L inhibited receptor-, adapter-, TRAF-, and IKK-alpha and IKK-beta-dependent signaling to NF-kappaB. N1L associated with several components of the multisubunit I-kappaB kinase complex, most strongly associating with the kinase, TANK-binding kinase 1 (TBK1). Together these findings are consistent with the hypothesis that N1L disrupts signaling to NF-kappaB by Toll/IL-1Rs and TNF superfamily receptors by targeting the IKK complex for inhibition. Furthermore, N1L inhibited IRF3 signaling, which is also regulated by TBK1. These studies define a role for N1L as an immunomodulator of innate immunity by targeting components of NF-kappaB and IRF3 signaling pathways.  相似文献   

4.
5.
6.
The activation of dendritic cells is marked by changes both on their cell surfaces and in their functions. We define EWI-2/CD316 as an early activation marker of dendritic cells upregulated by Toll-like receptor ligands clearly before CD86 and CD83. By expression cloning, human heat shock protein A8 (HSPA8), a member of the hsp70 family, was identified as the ligand for EWI-2. Soluble EWI-2 bound both to cells expressing HSPA8 and also to immobilized HSPA8 protein. Although heat shock proteins are evolutionarily well conserved, other members of this class, including human hsp60 and mycobacterial hsp65, did not bind to EWI-2. The ligation of EWI-2 enhanced the CCL21/SLC-dependent migration of activated mature dendritic cells but attenuated their antigen-specific stimulatory capacities. Important functions of recently activated dendritic cells are thus critically modulated by the newly discovered HSPA8-EWI-2 interaction.  相似文献   

7.
Ku proteins such as Ku70 and Ku80 play key roles in multiple nuclear processes. Nuclear translocation of Ku70 is independent of Ku80 translocation and mediated by nuclear localization signal (NLS) receptors including importin-alpha. In the present study using pancreatic acinar AR42J cells, heat shock cognate protein 70 (Hsc70) was identified as the protein associated with NLS of Ku70. Interaction of Ku70 with importin-alpha and nuclear translocation of Ku70 was suppressed by overexpression of Hsc70, but enhanced by downregulation of Hsc70. The results suggest that the formation of Ku70 complex with Hsc70 prevents NLS of Ku70 from access of importin-alpha and inhibits nuclear translocation of Ku70. Since NF-kappaB p65 activation induced the decrease of Hsc70 level, the interaction of Ku70 with importin-alpha and nuclear translocation of Ku70 increased upon the activation of NF-kappaB p65. NF-kappaB p65 induced cell proliferation through decrease of Hsc70 levels and increase of nuclear translocation of Ku70. In the cells treated with cerulein as a physiological stimulus to activate NF-kappaB p65, nuclear translocation of Ku70 increased through NF-kappaB p65-mediated decrease of Hsc70 level. The results suggest that the involvement of NF-kappaB p65 in nuclear translocation of Ku70 may be mediated by Hsc70 degradation, which may play a key role in cell proliferation of pancreatic acinar AR42J cells.  相似文献   

8.
9.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guérin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.  相似文献   

10.
The role of Toll-like receptors in immunity against mycobacterial infection   总被引:9,自引:0,他引:9  
Recent work implicates Toll-like receptor (TLR) proteins as regulators of innate immune cell activation induced by Mycobacterium tuberculosis, which continues to ravage nearly one-third of the world's population. Novel insights into how TLR proteins may dictate the nature and extent of cellular immune responses against this pathogen will be discussed.  相似文献   

11.
The immune response to mycobacterial pathogens comprises a significant percentage of T cells with specificity for a 65-kDa heat shock protein (hsp) which is highly conserved in bacteria and man. PBMC were activated in vitro with killed Mycobacterium tuberculosis and afterward tested for CTL activity on autologous target cells primed with 1) killed M. tuberculosis, 2) intact recombinant 65-kDa hsp of Mycobacterium bovis/M. tuberculosis; or 3) tryptic fragments of the recombinant 65-kDa hsp. Strong CTL activity was observed on targets primed with killed M. tuberculosis or with tryptic fragments of the 65-kDa hsp, but not on those primed with the intact 65-kDa hsp. M. tuberculosis activated T cells from 2/13 donors tested exerted killer activity against unprimed targets. To assess whether T cell responses were directed against self-epitopes shared by the mycobacterial and human 65-kDa hsp, four peptides of at least 10 amino acids length were synthesized corresponding to fully or almost identical regions of these molecules. Peripheral blood T cells from 8/9 individuals tested, after activation with killed M. tuberculosis, expressed strong CTL activity toward autologous targets primed with one or more of these synthetic peptides. By using HLA-DR transfected murine L cells we found that the epitopes were recognized in the context of histocompatible HLA-DR (class II) molecules. We conclude that the demonstration of T cells with specificity to self-epitopes in vitro is not indicative for autoimmune disease. However, if at certain stages of infection such T cells are activated by crossreactive microbial epitopes they could cause autoimmune responses.  相似文献   

12.
Toll-like receptor 4 (TLR-4), initially identified as an LPS receptor, is critical to the signaling of a variety of danger signals, including heat shock protein 60, fibrinogen, and fibronectin. Recent data also suggest that TLR-4 plays a role in determining survival in both endotoxemia and hemorrhagic shock. We hypothesized that a functional TLR-4 would be required for hemorrhage and endotoxin-induced acute lung injury. Hemorrhage- and endotoxin-induced lung TNF-alpha mRNA and protein production, neutrophil accumulation, and protein permeability were dependent on a functional TLR-4. Hemorrhage-induced nuclear factor (NF)-kappaB activation was independent of functional TLR-4, whereas endotoxin-induced activation of NF-kappaB requires a functional TLR-4 for full response. Therefore, we conclude that 1) hemorrhage-induced acute lung injury is TLR-4 dependent and 2) hemorrhage has a different and distinct TLR-4-dependent intracellular activation mechanism compared with endotoxemia.  相似文献   

13.
T cell activation by mycobacterial antigens in inflammatory synovitis   总被引:1,自引:0,他引:1  
To define which mycobacterial antigens were responsible for the activation of synovial fluid T lymphocytes, acetone-precipitated Mycobacterium tuberculosis (AP-MT) antigens were separated into five fractions following polyacrylamide gel electrophoresis and added to the mononuclear cell cultures of patients with inflammatory synovitis. Fractions 2 (50 to 70 kDa) and 5 (less than 28 kDa) resulted in significantly more proliferation than that of fractions 1, 3, and 4. The response to a purified mycobacterial 65-kDa heat shock protein (hsp), which migrated in fraction 2, was highly correlated (r = 0.89, P less than 0.001) with the response to the crude AP-MT. The proliferative response to a different hsp. the Escherichia coli DnaK, by synovial fluid lymphocytes was marginal. Analysis of the synovial fluid T cell response to mycobacterial culture filtrates by T cell Western blotting revealed dominant responses to antigen(s) in the range of 31 to 21 kDa in each responding patient, although no other consistent pattern of T cell activation was noted. Three lines of evidence suggested that the response to the low molecular weight fractions was directed against degradation fragments of the 65-kDa protein. These observations suggest that the activation of T lymphocytes obtained from inflammatory synovial fluids by crude mycobacterial antigens was due in large part to recognition of the 65-kDa mycobacterial hsp.  相似文献   

14.
15.
The biology of Toll-like receptors   总被引:24,自引:0,他引:24  
In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion.  相似文献   

16.
A mycobacterial 65 kDa molecule is a member of the GroEL heat shock protein family. We developed mAbs reacting against recombinant 65 kDa protein by using a gene (pTB12) which encodes this protein. Three mAbs (B20, B97 and B167) reacted selectively with 65 kDa proteins of Mycobacterium tuberculosis, BCG and Mycobacterium leprae, although B20 and B167 may weakly react with a 15 kDa molecule of mammalian cells. One (B108) was obviously cross-reactive between mycobacterial 65 kDa and the mammalian intracytoplasmic protein. We also developed deletion mutants of pTB12. The localization of these mAb-defined epitopes was determined by using truncated proteins of the Mycobacterium tuberculosis 65 kDa molecule produced in E. coli. Immunohistochemical analysis showed that B20, B97 and B167 mAbs could detect this antigen in experimental granulomas induced by injection of BCG in the subcutaneous tissue of rats. These mAbs should be useful for analyzing the immunobiologic roles of mycobacterial 65 kDa molecules.  相似文献   

17.
18.
19.
Extracellular heat shock proteins (HSPs) can stimulate antigen-specific immune responses. Using recombinant human (rhu)Hsp70, we previously demonstrated that through complex formation with exogenous antigenic peptides, rhuHsp70 can enhance cross-presentation by antigen-presenting cells (APCs) resulting in stronger T cell stimulation. T cell stimulatory activity has also been described for mycobacterial (myc)Hsp70. MycHsp70-assisted T cell activation has been reported to act through the binding of mycHsp70 to chemokine receptor 5 (CCR5), calcium signaling, phenotypic maturation, and cytokine secretion by dendritic cells (DCs). We report that highly purified rhuHsp70 and mycHsp70 proteins both strongly enhance cross-presentation of exogenous antigens. Augmentation of cross-presentation was seen for different APCs, irrespective of CCR5 expression. Moreover, neither of the purified Hsp70 proteins induced calcium signals in APCs. Instead, calcium signaling activity was found to be caused by contaminating nucleotides present in Hsp70 protein preparations. These results refute the hypothesis that mycHsp70 proteins require CCR5 expression and calcium signaling by APCs for enhanced antigen cross-presentation for T cell stimulation.  相似文献   

20.
High-mobility group box protein 1 (HMGB1) is a non-histone nuclear protein that acts as a pro-inflammatory cytokine and is released by monocytes and macrophages. Necrotic cells also release HMGB1 at the site of tissue damage which induces a variety of cellular responses, including the expression of pro-inflammatory mediators. This study investigated the secretion of HMGB1 in mycobacterial infection by macrophages in vitro and in the lungs of infected guinea pigs. We observed that infection by mycobacterium effectively induced HMGB1 release in both macrophage and monocytic cell cultures. Culture filtrate proteins from Mycobacterium tuberculosis induced maximum release of HMGB1 compared with different subcellular fractions of mycobacterium. We demonstrated that HMGB1 is released in lungs during infection of M. tuberculosis in guinea pigs and increased HMGB1 secretion in lungs of guinea pigs was delayed by prior vaccination with Mycobacterium bovis BCG. The secretion of cytokines like tumour necrosis factor alpha (TNF-alpha) and Interleukin-1beta was significantly increased when M. bovis BCG-infected cultures of J774A.1 cells were incubated with HMGB1. Among different mycobacterial toll-like receptor ligands, heat-shock protein 65 (HSP65) was found to be more potent in inducing HMGB1 secretion in RAW 264.7 cells. Pharmacological suppression of p38 or extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases with specific inhibitors failed to inhibit HSP65-induced HMGB1 release, but inhibition of c-Jun NH(2)-terminal kinase activation attenuated HMGB1 release. Inhibition of the inducible NO synthase and neutralizing antibodies against TNF-alpha also reduced HMGB1 release stimulated by HSP65. We conclude that HMGB1 is secreted by macrophages during tuberculosis and it may act as a signal of tissue or cellular injury and enhances immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号