首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kanrar S  Onguka O  Smith HM 《Planta》2006,224(5):1163-1173
In flowering plants, post-embryonic development is mediated by the activity of shoot and root apical meristems. Shoot architecture results from activity of the shoot apical meristem (SAM), which initiates primordia, including leaves, internodes and axillary meristems, repetitively from its flanks. Axillary meristems can develop into secondary shoots or flowers. In Arabidopsis, two paralogous BEL1-like (BELL) homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), expressed in the SAM, encode DNA-binding proteins that are essential for specifying floral primordia and establishing early internode patterning events during inflorescence development. Biochemical studies show that PNY associates with the knotted1-like homeobox (KNOX) proteins, SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). PNY-BP heterodimers are essential for establishing early internode patterning events, while PNY-STM heterodimers are critical for SAM function. In this report, we examined the role of PNY, PNF and STM during development. First, we show that PNF interacts with STM and BP indicating that PNY and PNF are redundant functioning proteins. Inflorescence development, but not vegetative development, is sensitive to the dosage levels of PNY, PNF and STM. Characterization of stm-10, a weak allele in the Columbia ecotype, indicates that STM is also involved in floral specification and internode development. Our examination of the genetic requirements for PNY, PNF and STM demonstrates that these KNOX–BELL heterodimers control floral specification, internode patterning and the maintenance of boundaries between initiating floral primordia and the inflorescence meristem.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
3.
4.
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.  相似文献   

5.
6.
7.
8.
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5′ flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50–60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3–15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15–35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
 Trees represent a, probably the, major component of the biosphere and have a unique place in the history of Mankind. One of their most fascinating features is the process of secondary growth which is effected principally by the secondary vascular system, the developmental continuum of secondary phloem, vascular cambium, and secondary xylem. However, for too long assumptions about the developmental biology of trees have had to be based upon studies of primary growth systems within annual, herbaceous species because study of the secondary vascular system had been largely ignored. Even when attempts are made to understand some of the most fundamental features of the secondary vascular system, such as xylogenesis, the current model system, isolated Zinnia mesophyll cells, is not entirely appropriate to the situation in the intact tree. Some deficiencies of the Zinnia system are discussed, and the advantages of the genus Populus as a model for study of the hardwood secondary vascular system are considered. Some of the new approaches which are poised to lead to significant advances in our knowledge of the cell bio-logy of the secondary vascular system of trees – spe-cifically of the cell wall, the plasmalemma, and the cytoskeleton – are discussed. The value of one of these new techniques – immunocytochemistry – is demonstrated by a consideration of recent work on the role of the cytoskeleton in the hardwood secondary vascular system. Received: 23 December 1997 / Accepted: 13 May 1998  相似文献   

10.
11.
12.
13.
Podostemaceae (the river weeds) are ecologically and morphologically unusual angiosperms. The subfamily Tristichoideae has typical shoot apical meristems (SAMs) that produce leaves, but Podostemoideae is devoid of SAMs and new leaves arise below the base of older leaves. To reveal the genetic basis for the evolution of novel shoot organogenesis in Podostemaceae, we examined the expression patterns of key regulatory genes for shoot development (i.e., SHOOT MERISTEMLESS (STM), WUSCHEL (WUS), and ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) orthologs) in Tristichoideae and Podostemoideae. In the SAM-mediated shoots of Tristichoideae, like in model plants, STM and WUS orthologs were expressed in the SAM. In the SAM-less shoots of Podostemoideae, STM and WUS orthologs were expressed in the initiating leaf/bract primordium. In older leaf/bract primordia, WUS expression disappeared and STM expression became restricted to the basal part, whereas ARP was expressed in the distal part in a complementary pattern to STM expression. In the reproductive shoots of Podostemoideae with a normal mode of flower development, STM and WUS were expressed in the floral meristem, but not in the floral organs, similar to the pattern in model plants. These results suggest that the leaf/bract of Podostemoideae is initiated as a SAM and differentiates into a single apical leaf/bract, resulting in the evolution of novel shoot-leaf mixed organs in Podostemaceae.  相似文献   

14.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

15.

Background  

Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups.  相似文献   

16.
It has been suggested that LeFRK2, the major fructose-phosphorylating enzyme in tomato plants, may be required for stem xylem development. Yet, we do not know if this enzyme affects the development of individual vessels, whether it affects water conductance, or whether it affects phloem development and sugar transport. Here, we show that suppression of LeFRK2 results in a significant reduction in the size of vascular cells and slows fiber maturation. The vessels in stems of LeFRK2-antisense plants are narrower than in WT plants and have thinner secondary cell walls. Although the cambium produces rounded secondary vessels, these vessels become deformed during the early stages of xylem maturation. Water conductance is then reduced in stems, roots, and leaves, suggesting that LeFRK2 influences xylem development throughout the entire vascular system. Interestingly, the build-up of positive xylem pressure under static (no-flow) conditions was also decreased. Suppression of LeFRK2 reduced the length and width of the sieve elements, as well as callose deposition. To examine the effect of LeFRK2 suppression on phloem transport, we created triple-grafted plants in which a portion of the wild-type stem was replaced with an antisense interstcok, and compared the contents of the transported sugar, sucrose, in the different portions of these stems. Sucrose contents above and within the LeFRK2-antisense interstock were significantly higher than those below the graft. These results show that the antisense interstock restricted the downward movement of sucrose, suggesting that LeFRK2 is required for both phloem and xylem development. Contribution No. 114/2009 from the Volcani Center ARO.  相似文献   

17.
The previously isolated Brassica genes homologous to the Arabidopsis SHOOT MERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL) were characterized during embryonic and postembryonic development in vivo. Ectopic expression of the Brassica genes in Arabidopsis caused profound phenotypic deviations from the WT. While the over-expression of BnCLV1 produced smaller embryonic shoot apical meristems (SAMs) with delayed activation at germination, the introduction of Brassica STM enhanced the structure of the SAM and accelerated meristem reactivation. These opposite behaviors were related to differential levels of endogenous cytokinins and abscisic acid (ABA), as well as the expression of genes regulating meristem activity. Low levels of ABA and increased accumulation of the cytokinins trans-zeatin-O-glucoside (t-ZOG), cis-zeatin-O-glucoside (c-ZOG), trans-zeatin riboside (t-ZR), and isopentenyladenosine (iPA) were measured in seedlings of Arabidopsis plants over-expressing the Brassica STM. This was in contrast to BnCLV1 over-expressors which had very low levels of cytokinins. During the early phases of meristem reactivation the expression of the Arabidopsis AtKNAT6, AtWUSCHEL, and AtCUPSHAPED COTYLEDON-1 was induced by the introduction of the Brassica STM whereas that of AtCLAVATA 3 was inhibited. An opposite expression profile was measured in lines ectopically expressing BnCLV1. Other phenotypic abnormalities observed in Arabidopsis plants over-expressing the Brassica STM included lobed leaves, ectopic meristems, and increased number of reproductive organs, i.e. flowers and siliques. The introduction of BnZLL-1 and -2 did not cause major developmental abnormalities.  相似文献   

18.
Citrus vein-enation virus-induced tumors on leaves, thorns, stems, and roots of Citrus auranti-folia (Christm.) Swingle and C. jambhiri Lush. were investigated. Leaf vein tumors are initiated as cytological abnormalities of phloem fiber primordial cells adjacent to protophloem sieve tubes. The tumors then enlarge through hyperplasia of the affected fiber primordia. The mesophyll and epidermal tissues on the abaxial side of affected veins divide less prolifically and contribute to the tumor mass. Leaf vein tumors are determinate, like the protophloem where they originate, and cease enlarging as the leaf matures. Most thorn tumors are initiated in fiber primordia and develop similarly to vein tumors. Stem tumors and some thorn tumors develop from affected cells of the procambial tissue that lies between the metaxylem and metaphloem of vascular bundles. The cambium which differentiates in these areas is composed of affected cells and produces large amounts of abnormal xylem tissue. The resulting woody tumors are indeterminate like the cambium and secondary xylem.  相似文献   

19.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

20.
In Arabidopsis, SEUSS (SEU) and SEUSS‐LIKE 2 (SLK2) are components of the LEUNIG (LUG) repressor complex that coordinates various aspects of post‐embryonic development. The complex also plays a critical role during embryogenesis, as seu slk2 double mutants have small, narrow cotyledons and lack a shoot apical meristem (SAM). Here we show that seu slk2 double mutant embryos exhibit delayed cotyledon outgrowth and that this is associated with altered PIN‐FORMED1 (PIN1) expression and localisation during the early stages of embryogenesis. These observations suggest that SEU and SLK2 promote the transition to bilateral symmetry by modulating auxin distribution in the embryonic shoot. This study also shows that loss of SAM formation in seu slk2 mutants is associated with reduced expression of the class I KNOX (KNOXI) genes SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS and KNAT2. Furthermore, elevating STM expression in seu slk2 mutant embryos was sufficient to restore SAM formation but not post‐embryonic activity, while both SAM formation and activity were rescued when SLK2 expression was restored in either the cotyledons or boundary regions. These results demonstrate that SEU and SLK2 function redundantly to promote embryonic shoot development and likely act through a non‐cell autonomous pathway to promote KNOXI activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号