首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

2.
DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-L-homocysteine (AdoHcy). The turnover rate (k cat) of M.HhaI, and the other two cytosine-5 MTases examined, is limited by a step subsequent to methyl transfer; however, no such step has so far been identified. To elucidate the role of cofactor interactions during catalysis, eight mutants of Trp41, which is located in the cofactor binding pocket, were constructed and characterized. The mutants show full proficiency in DNA binding and base-flipping, and little variation is observed in the apparent methyl transfer rate k chem as determined by rapid-quench experiments using immobilized fluorescent-labeled DNA. However, the Trp41 replacements with short side chains substantially perturb cofactor binding (100-fold higher K(AdoMet)D and K(AdoMet)M) leading to a faster turnover of the enzyme (10-fold higher k cat). Our analysis indicates that the rate-limiting breakdown of a long-lived ternary product complex is initiated by the dissociation of AdoHcy or the opening of the catalytic loop in the enzyme.  相似文献   

3.
The role of Glu119 in S-adenosyl-L-methionine-dependent DNA methyltransferase M.HhaI-catalyzed DNA methylation was studied. Glu119 belongs to the highly conserved Glu/Asn/Val motif found in all DNA C5-cytosine methyltransferases, and its importance for M.HhaI function remains untested. We show that formation of the covalent intermediate between Cys81 and the target cytosine requires Glu119, since conversion to Ala, Asp or Gln lowers the rate of methyl transfer 10(2)-10(6) fold. Further, unlike the wild-type M.HhaI, these mutants are not trapped by the substrate in which the target cytosine is replaced with the mechanism-based inhibitor 5-fluorocytosine. The DNA binding affinity for the Glu119Asp mutant is decreased 10(3)-fold. Thus, the ability of the enzyme to stabilize the extrahelical cytosine is coupled directly to tight DNA binding. The structures of the ternary protein/DNA/AdoHcy complexes for both the Glu119Ala and Glu119Gln mutants (2.70 A and 2.75 A, respectively) show that the flipped base is positioned nearly identically with that observed in the wild-type M.HhaI complex. A single water molecule in the Glu119Ala structure between Ala119 and the extrahelical cytosine N3 is lacking in the Glu119Gln and wild-type M.HhaI structures, and most likely accounts for this mutant's partial activity. Glu119 has essential roles in activating the target cytosine for nucleophilic attack and contributes to tight DNA binding.  相似文献   

4.
Improved sequence specificity of the DNA cytosine methyltransferase HhaI was achieved by disrupting interactions at a hydrophobic interface between the active site of the enzyme and a highly conserved flexible loop. Transient fluorescence experiments show that mutations disrupting this interface destabilize the positioning of the extrahelical, "flipped" cytosine base within the active site. The ternary crystal structure of the F124A M.HhaI bound to cognate DNA and the cofactor analogue S-adenosyl-l-homocysteine shows an increase in cavity volume between the flexible loop and the core of the enzyme. This cavity disrupts the interface between the loop and the active site, thereby destabilizing the extrahelical target base. The favored partitioning of the base-flipped enzyme-DNA complex back to the base-stacked intermediate results in the mutant enzyme discriminating better than the wild-type enzyme against non-cognate sites. Building upon the concepts of kinetic proofreading and our understanding of M.HhaI, we describe how a 16-fold specificity enhancement achieved with a double mutation at the loop/active site interface is acquired through destabilization of intermediates prior to methyltransfer rather than disruption of direct interactions between the enzyme and the substrate for M.HhaI.  相似文献   

5.
The activity of recombinant murine G9a toward lysine 9 of histone H3 was investigated. GST fusion proteins containing various lengths of the histone H3 amino-terminal tail were used as substrates in the presence of recombinant G9a enzyme and AdoMet cosubstrate. The minimal substrate methylated by G9a contained seven amino acids (TARKSTG) of the histone H3 tail. Furthermore, mutational analysis of the minimal substrate was performed to identify the amino acids essential for G9a-mediated methylation. All amino acids except Thr-11 were indispensable for the methylation reaction. Steady-state kinetic analysis of the wild-type and histone H3 point mutants, lysine 4 changed to alanine (K4A) or lysine 27 changed to alanine (K27A), with purified G9a revealed similar catalytic efficiency but a reduction in turnover number (k(cat)) from 78 to 58 h(-)(1). G9a methylated synthetic peptide substrates containing the first 13 amino acids of histone H3 efficiently, although methylation, acetylation, or mutation of proximal Lys-4 amino acids reduced Lys-9 methylation. The k(cat) for wild-type peptide substrate vs Lys-4 acetyl- or trimethyl-modified peptide were 88 and 32 h(-)(1), respectively, and the K(m) for the peptides varied from 0.6 to 2.2 muM, resulting in a large difference (15-91) in catalytic efficiency. Ser-10 or Thr-11 phosphorylation resulted in poor methylation by G9a. Immunoprecipitation of unmodified and Ser-10 and Thr-11 phosphorylated histone H3 displayed mostly Lys-4 dimethylation. Dimethylated Lys-9 was reduced in Ser-10 and Thr-11 immunoprecipitated phosphorylated histones as compared to nonphosphorylated H3. In an immunocytochemical assay, GFP fusion SUV39H1 or G9a did not colocalize with phosphorylated histone H3. Thus, Ser-10/Thr-11 phosphorylation impairs Lys-9 methylation. These data suggest that the sequence context of the modified residue affects G9a activity and the modification in the proximal amino acids influences methylation.  相似文献   

6.
Functional analysis of Gln-237 mutants of HhaI methyltransferase.   总被引:3,自引:2,他引:1       下载免费PDF全文
When the HhaI (cytosine-5) methyltransferase (M.HhaI) binds DNA it causes the target cytosine to be flipped 180 degrees out of the helix. The space becomes occupied by two amino acids, Ser-87 and Gln-237, which enter the helix from opposite sides and form a hydrogen bond to each other. Gln-237 may be involved in specific sequence recognition since it forms three hydrogen bonds to the orphan guanosine, which is the partner of the target cytosine. We have prepared all 19 mutants of Gln-237 and tested their biochemical properties. We find that mutations of this residue greatly affect the stability of the M.HhaI-DNA complex without affecting the enzyme's specificity for the target sequence. Surprisingly, all mutants retain detectable levels of enzymatic activity.  相似文献   

7.
Flipping of a nucleotide out of a B-DNA helix into the active site of an enzyme has been observed for the HhaI and HaeIII cytosine-5 methyltransferases (M.HhaI and M.HaeIII) and for numerous DNA repair enzymes. Here we studied the base flipping motions in the binary M. HhaI-DNA and the ternary M.HhaI-DNA-cofactor systems in solution. Two 5-fluorocytosines were introduced into the DNA in the places of the target cytosine and, as an internal control, a cytosine positioned two nucleotides upstream of the recognition sequence 5'-GCGC-3'. The 19F NMR spectra combined with gel mobility data show that interaction with the enzyme induces partition of the target base among three states, i.e. stacked in the B-DNA, an ensemble of flipped-out forms and the flipped-out form locked in the enzyme active site. Addition of the cofactor analogue S-adenosyl-L-homocysteine greatly enhances the trapping of the target cytosine in the catalytic site. Distinct dynamic modes of the target cytosine have thus been identified along the reaction pathway, which includes novel base-flipping intermediates that were not observed in previous X-ray structures. The new data indicate that flipping of the target base out of the DNA helix is not dependent on binding of the cytosine in the catalytic pocket of M.HhaI, and suggest an active role of the enzyme in the opening of the DNA duplex.  相似文献   

8.
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.  相似文献   

9.
HhaI DNA methyltransferase flips the inner cytosine in the recognition sequence 5'-GCGC-3' out of the DNA helix and into the catalytic site for methylation. To identify intermediate states on the base-flipping pathway, affinity photo-crosslinking experiments were performed with synthetic dodecamer duplexes containing modified bases 2-thiothymine (2sT) or 4-thiothymine (4sT) at the target base position. Here we show that the DNA strand containing 2sT, but not 4sT, covalently cross-links to the HhaI methyltransferase upon irradiation at 340-360 nm.  相似文献   

10.
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.  相似文献   

11.
12.
Prokaryotic DNA methyltransferase SssI (M.SssI) methylates C5 position of cytosine residue in CpG sequences. To obtain functionally active M.SssI and its mutants as His6-tagged proteins, bacterial strains have been produced. To test a possible role of Ser300 in recognition of CpG site by this enzyme, M.SssI mutants containing Ser300 replacements with Gly or Pro have been obtained. These replacements have practically no effect on DNA binding and methylation by M.SssI except small disturbance of DNA binding affinity in the case of S300P mutant. It indicates that there are no interactions of both the side chain and, probably, the main chain of Ser300 with DNA. A replacement of highly conserved Va1188 residue with Ala has been performed. Vall88 may participate in the stabilization of the flipped target cytosine during reaction. The replacement results in a 5-fold decrease of dissociation constant of the enzyme-substrate complex and a 2-fold decrease of initial velocity of DNA methylation. Though there are no noticeable differences in the functioning of the mutant in comparison with the wild-type enzyme, the formation of contact between Val 188 and cytosine could not be excluded. In the case of V 188A mutant the contact may be probably formed between Ala and cytosine residue.  相似文献   

13.
The (cytosine-5) DNA methyltransferase M.HhaI causes its target cytosine base to be flipped completely out of the DNA helix upon binding. We have investigated the effects of replacing the target cytosine by other, mismatched bases, including adenine, guanine, thymine and uracil. We find that M.HhaI binds more tightly to such mismatched substrates and can even transfer a methyl group to uracil if a G:U mismatch is present. Other mismatched substrates in which the orphan guanine is changed exhibit similar behavior. Overall, the affinity of DNA binding correlates inversely with the stability of the target base pair, while the nature of the target base appears irrelevant for complex formation. The presence of a cofactor analog. S-adenosyl-L-homocysteine, greatly enhances the selectivity of the methyltransferase for cytosine at the target site. We propose that the DNA methyltransferases have evolved from mismatch binding proteins and that base flipping was, and still is, a key element in many DNA-enzyme interactions.  相似文献   

14.
W Xu  E R Kantrowitz 《Biochemistry》1989,28(26):9937-9943
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, the carbonyl group of carbamoyl phosphate interacts with Thr-55, Arg-105, and His-134. Site-specific mutagenesis was used to create a mutant version of the enzyme in which Thr-55 was replaced by alanine in order to help define the role of this residue in the catalytic mechanism. The Thr-55----Ala holoenzyme exhibits a 4.7-fold reduction in maximal observed specific activity, no alteration in aspartate cooperativity, and a small reduction in carbamoyl phosphate cooperativity. The mutation also causes 14-fold and 35-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy has shown that saturating carbamoyl phosphate does not induce a conformational change in the Thr-55----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Thr-55----Ala catalytic subunit are altered to a greater extent than the mutant holoenzyme. The mutant catalytic subunit cannot be saturated by either substrate under the experimental conditions. Furthermore, as opposed to the wild-type catalytic subunit, the Thr-55----Ala catalytic subunit shows cooperativity for aspartate and can be activated by N-(phosphonoacetyl)-L-aspartate in the presence of low concentrations of aspartate and high concentrations of carbamoyl phosphate. As deduced by circular dichroism spectroscopy, the conformation of the Thr-55----Ala catalytic subunit in the absence of active-site ligands is distinctly different from the wild-type catalytic subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.  相似文献   

16.
Arg165 forms part of a previously identified base flipping motif in the bacterial DNA cytosine methyltransferase, M.HhaI. Replacement of Arg165 with Ala has no detectable effect on either DNA or AdoMet affinity, yet causes the base flipping and restacking transitions to be decreased approximately 16 and 190-fold respectively, thus confirming the importance of this motif. However, these kinetic changes cannot account for the mutant's observed 10(5)-fold decreased catalytic rate. The mutant enzyme/cognate DNA cocrystal structure (2.79 A resolution) shows the target cytosine to be positioned approximately 30 degrees into the major groove, which is consistent with a major groove pathway for nucleotide flipping. The pyrimidine-sugar chi angle is rotated to approximately +171 degrees, from a range of -95 degrees to -120 degrees in B DNA, and -77 degrees in the WT M.HhaI complex. Thus, Arg165 is important for maintaining the cytosine positioned for nucleophilic attack by Cys81. The cytosine sugar pucker is in the C2'-endo-C3'-exo (South conformation), in contrast to the previously reported C3'-endo (North conformation) described for the original 2.70 A resolution cocrystal structure of the WT M.HhaI/DNA complex. We determined a high resolution structure of the WT M.HhaI/DNA complex (1.96 A) to better determine the sugar pucker. This new structure is similar to the original, lower resolution WT M.HhaI complex, but shows that the sugar pucker is O4'-endo (East conformation), intermediate between the South and North conformers. In summary, Arg165 plays significant roles in base flipping, cytosine positioning, and catalysis. Furthermore, the previously proposed M.HhaI-mediated changes in sugar pucker may not be an important contributor to the base flipping mechanism. These results provide insights into the base flipping and catalytic mechanisms for bacterial and eukaryotic DNA methyltransferases.  相似文献   

17.
W Xu  E R Kantrowitz 《Biochemistry》1991,30(9):2535-2542
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, oxygens of the phosphate of carbamoyl phosphate interact with Ser-52, Thr-53 (backbone), Arg-54, Thr-55, and Arg-105 from one catalytic chain, as well as Ser-80 and Lys-84 from an adjacent chain in the same catalytic subunit. In order to define the role of Ser-52 and Ser-80 in the catalytic mechanism, two mutant versions of the enzyme were created with Ser-52 or Ser-80 replaced by alanine. The Ser-52----Ala holoenzyme exhibits a 670-fold reduction in maximal observed specific activity, and a loss of both aspartate and carbamoyl phosphate cooperativity. This mutation also causes 23-fold and 5.6-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy indicates that saturating carbamoyl phosphate does not induce the same conformational change in the Ser-52----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Ser-52----Ala catalytic subunit are altered to a lesser extent than the mutant holoenzyme. The maximal observed specific activity is reduced by 89-fold, and the carbamoyl phosphate concentration at half the maximal observed velocity increases by 53-fold while the aspartate concentration at half the maximal observed velocity increases 6-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The characterization of conformational changes that drive induced-fit mechanisms and their quantitative importance to enzyme specificity are essential for a full understanding of enzyme function. Here, we report on M.HhaI, a sequence-specific DNA cytosine C(5) methyltransferase that reorganizes a flexible loop (residues 80-100) upon binding cognate DNA as part of an induced-fit mechanism. To directly observe this approximately 26A conformational rearrangement and provide a basis for understanding its importance to specificity, we replaced loop residues Lys-91 and Glu-94 with tryptophans. The double mutants W41F/K91W and W41F/E94W are relatively unperturbed in kinetic and thermodynamic properties. W41F/E94W shows DNA sequence-dependent changes in fluorescence: significant changes in equilibrium and transient state fluorescence that occur when the enzyme binds cognate DNA are absent with nonspecific DNA. These real-time, solution-based results provide direct evidence that binding to cognate DNA induces loop reorganization into the closed conformer, resulting in the correct assembly of the active site. We propose that M.HhaI scans nonspecific DNA in the loop-open conformer and rearranges to the closed form once the cognate site is recognized. The fluorescence data exclude mechanisms in which loop motion precedes base flipping, and we show loop rearrangements are directly coupled to base flipping, because the sequential removal of single hydrogen bonds within the target guanosine:cytosine base pair results in corresponding changes in loop motion.  相似文献   

19.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

20.
The DNA methyltransferase M.HhaI is an excellent model for understanding how recognition of a nucleic acid substrate is translated into site-specific modification. In this study, we utilize direct, real-time monitoring of the catalytic loop position via engineered tryptophan fluorescence reporters to dissect the conformational transitions that occur in both enzyme and DNA substrate prior to methylation of the target cytosine. Using nucleobase analogues in place of the target and orphan bases, the kinetics of the base flipping and catalytic loop closure rates were determined, revealing that base flipping precedes loop closure as the rate-determining step prior to methyl transfer. To determine the mechanism by which individual specific hydrogen bond contacts at the enzyme-DNA interface mediate these conformational transitions, nucleobase analogues lacking hydrogen bonding groups were incorporated into the recognition sequence to disrupt the major groove recognition elements. The consequences of binding, loop closure, and catalysis were determined for four contacts, revealing large differences in the contribution of individual hydrogen bonds to DNA recognition and conformational transitions on the path to catalysis. Our results describe how M.HhaI utilizes direct readout contacts to accelerate extrication of the target base that offer new insights into the evolutionary history of this important class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号