首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A transgenic immunoglobulin mu gene prevents rearrangement of endogenous genes   总被引:31,自引:0,他引:31  
Transgenic mice containing a microinjected rearranged immunoglobulin (Ig) mu heavy chain gene were examined for the effects on DNA rearrangement of the endogenous Ig genes. Abelson murine leukemia virus (A-MuLV) cell lines were isolated from pre-B cells of transgenic mice and of normal littermates. Microinjected mu gene RNA and a mu heavy chain protein were synthesized in every transgenic A-MuLV cell line. Only 10% of normal mouse A-MuLV transformants synthesized mu protein. A germ-line JH allele was observed in 40% of the transgenic lines, demonstrating that the block to endogenous Ig DNA rearrangement occurred at the first step of heavy chain DNA joining. All alleles were rearranged in normal mouse A-MuLV lines. Germline JH alleles were also detected in 10% of the transgenic hybridomas derived from proliferating B cells. Our results support a model of active prevention of rearrangement by the product of successfully rearranged mu genes.  相似文献   

3.
The ability to regulate temporal- and spatial-specific expression of target genes in transgenic mice will facilitate analysis of gene function and enable the generation of murine models of human diseases. The genetic analysis of mammary gland tumorigenesis requires the development of mammary gland-specific transgenics, which are tightly regulated throughout the adult mammary epithelium. Analysis of genes implicated in mammary gland tumorigenesis has been hampered by mosaic transgene expression and the findings that homozygous deletion of several candidate genes (cyclin D1, Stat5A, prolactin receptor) abrogates normal mammary gland development. We describe the development of transgenic mouse lines in which sustained transgene expression was inducibly regulated, both specifically and homogeneously, in the adult mammary gland epithelium. Transgenes encoding RXRalpha and a chimeric ecdysone receptor under control of a modified MMTV-LTR, which targets mammary gland expression, were used. These transgenic 'receptor' lines were crossed with transgenic 'enhancer' lines in which the ecdysone/RXR binding site induced ligand-dependent expression of transgenic beta-galactosidase. Pharmacokinetic analysis of a highly bioactive ligand (ponasterone A), identified through screening ecdysteroids from local plants, demonstrated sustained release and transgene expression in vivo. This transgenic model with both tightly regulated and homogeneous transgene expression, which was sustained in vivo using ligands readily extracted from local flora, has broad practical applicability for genetic analysis of mammary gland disease.  相似文献   

4.
TP53 protects cells from transformation by responding to stresses including aneuploidy and DNA double-strand breaks (DSBs). TP53 induces apoptosis of lymphocytes with persistent DSBs at antigen receptor loci and other genomic loci to prevent these lesions from generating oncogenic translocations. Despite this critical function of TP53, germline Tp53−/− mice succumb to immature T-cell (thymic) lymphomas that exhibit aneuploidy and lack clonal translocations. However, Tp53−/− mice occasionally develop B lineage lymphomas and Tp53 deletion in pro-B cells causes lymphomas with oncogenic immunoglobulin (Ig) locus translocations. In addition, human lymphoid cancers with somatic TP53 inactivation often harbor oncogenic IG or T-cell receptor (TCR) locus translocations. To determine whether somatic Tp53 inactivation unmasks translocations or alters the frequency of B lineage tumors in mice, we generated and analyzed mice with conditional Tp53 deletion initiating in hematopoietic stem cells (HSCs) or in lineage-committed thymocytes. Median tumor-free survival of each strain was similar to the lifespan of Tp53−/− mice. Mice with HSC deletion of Tp53 predominantly succumbed to thymic lymphomas with clonal translocations not involving Tcr loci; however, these mice occasionally developed mature B-cell lymphomas that harbored clonal Ig translocations. Deletion of Tp53 in thymocytes caused thymic lymphomas with aneuploidy and/or clonal translocations, including oncogenic Tcr locus translocations. Our data demonstrate that the developmental stage of Tp53 inactivation affects karyotypes of lymphoid malignancies in mice where somatic deletion of Tp53 initiating in thymocytes is sufficient to cause thymic lymphomas with oncogenic translocations.  相似文献   

5.
We have investigated the role of the p53 gene in oncogenesis in vivo by generating transgenic mice carrying murine p53 genomic fragments isolated from a mouse Friend erythroleukemia cell line or BALB/c mouse liver DNA. Elevated levels of p53 mRNA were detected in several tissues of two transgenic lines tested. Increased levels of p53 protein were also detected in most of the tissues analyzed by Western blotting (immunoblotting). Because both transgenes encoded p53 proteins that were antigenically distinct from wild-type p53, it was possible to demonstrate that overexpression of the p53 protein was mostly, if not entirely, due to the expression of the transgenes. Neoplasms developed in 20% of the transgenic mice, with a high incidence of lung adenocarcinomas, osteosarcomas, and lymphomas. Tissues such as ovaries that expressed the transgene at high levels were not at higher risk of malignant transformation than tissues expressing p53 protein at much lower levels. The long latent period and low penetrance suggest that overexpression of p53 alone is not sufficient to induce malignancies and that additional events are required. These observations provide direct evidence that mutant alleles of the p53 oncogene have oncogenic potential in vivo and that different cell types show intrinsic differences in susceptibility to malignant transformation by p53. Since recent data suggest that p53 may be a recessive oncogene, it is possible that the elevated tumor incidence results from functional inactivation of endogenous p53 by overexpression of the mutant transgene. The high incidence of lung and bone tumors suggests that p53 transgenic mice may provide a useful model to investigate the molecular events that underlie these malignancies in humans.  相似文献   

6.
In Epstein-Barr virus-transformed B cells, known as lymphoblastoid cell lines (LCLs), LMP2A binds the tyrosine kinases Syk and Lyn, blocking B-cell receptor (BCR) signaling and viral lytic replication. SH2 domains in Syk mediate binding to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) in LMP2A. Mutation of the LMP2A ITAM in LCLs eliminates Syk binding and allows for full BCR signaling, thereby delineating the significance of the LMP2A-Syk interaction. In transgenic mice, LMP2A causes a developmental alteration characterized by a block in surface immunoglobulin rearrangement resulting in BCR-negative B cells. Normally B cells lacking cognate BCR are rapidly apoptosed; however, LMP2A transgenic B cells develop and survive without a BCR. When bred into the recombinase activating gene 1 null (RAG(-/-)) background, all LMP2A transgenic lines produce BCR-negative B cells that develop and survive in the periphery. These data indicate that LMP2A imparts developmental and survival signals to B cells in vivo. In this study, LMP2A ITAM mutant transgenic mice were generated to investigate whether the LMP2A ITAM is essential for the survival phenotype in vivo. LMP2A ITAM mutant B cells develop normally, although transgene expression is comparable to that in previously described nonmutated LMP2A transgenic B cells. Additionally, LMP2A ITAM mutant mice are unable to promote B-cell development or survival when bred into the RAG(-/-) background or when grown in methylcellulose containing interleukin-7. These data demonstrate that the LMP2A ITAM is required for LMP2A-mediated developmental and survival signals in vivo.  相似文献   

7.
Burkitt lymphoma (BL) features translocations linking c-myc to an Ig locus. Breakpoints in the H chain locus (IgH) stand either close to J(H) or within switch regions and always link c-myc to the 3' IgH locus control region (3' LCR). To test the hypothesis that the 3' LCR alone was sufficient to deregulate c-myc, we generated mice carrying a 3' LCR-driven c-myc transgene and specifically up-regulating c-myc in B cells. Splenic B cells from mice proliferated exaggeratedly in response to various signals had an elevated apoptosis rate but normal B220/IgM/IgD expression. Although all Ig levels were lowered in vivo, class switching and Ig secretion proved normal in vitro. Beginning at the age of 12 wk, transgenic mice developed clonal lymphoblastic lymphomas or diffuse anaplastic plasmacytomas with an overall incidence of 80% by 40 wk. Lymphoblastic lymphomas were B220(+)IgM(+)IgD(+) with the BL "starry sky" appearance. Gene expression profiles revealed broad alterations in the proliferation program and the Ras-p21 pathway. Our study demonstrates that 3' IgH enhancers alone can deregulate c-myc and initiate the development of BL-like lymphomas. The rapid and constant occurrence of lymphoma in this model makes it valuable for the understanding and the potential therapeutic manipulation of c-myc oncogenicity in vivo.  相似文献   

8.
AID is required for c-myc/IgH chromosome translocations in vivo   总被引:13,自引:0,他引:13  
Chromosome translocations between c-myc and immunoglobulin (Ig) are associated with Burkitt's lymphoma in humans and with pristane- and IL6-induced plasmacytomas in mice. These translocations frequently involve Ig switch regions, suggesting that they might be the result of aberrant Ig class switch recombination (CSR). However, a direct link between CSR and chromosome translocations has not been established. We have examined c-myc/IgH translocations in IL6 transgenic mice that are mutant for activation induced cytidine deaminase (AID), the enzyme that initiates CSR. Here we report that AID is essential for the c-myc/IgH chromosome translocations induced by IL6.  相似文献   

9.
10.
Human gastric cancer MKN-45 cells were transfected with pULB 3238,a plasmid carrying MVMp MS-1 gene with its original P4 promoter replaced by the glucocorticoid inducible promoter MMTV-LTR.After the integration and expression of NS-1 gene,some of the transfectants died,while others remained alive,but the growth features of survived cells were changed.For further study on the antineoplastic function of parvoviral NS-1 protein in vivo,transgenic mice carrying NS-1 genes were established by conventional method.Among 4 founders,one of them was found to be able to transmit the transgene to around 50% of their offsprings.RT-PCR was performed to indicate the expression of NS-1 gene in transgenic mice and its mRNA appeared in a variety of tissues.The expression of integrated NS-1 gene may correlate with the decreased incidence of tumor induced in vivo by chemical carcinogens.  相似文献   

11.
Cyclin D1 is the regulatory subunit of certain protein kinases thought to advance the G1 phase of the cell cycle. Deregulated cyclin D1 expression has been implicated in several human neoplasms, most consistently in centrocytic B lymphoma, where the cyclin D1 gene usually has been translocated to an immunoglobulin locus. To determine directly whether constitutive cyclin D1 expression is lymphomagenic, transgenic mice were generated having the cyclin D1 gene linked to an immunoglobulin enhancer. Despite abundant transgene expression, their lymphocytes were normal in cell cycle activity, size and mitogen responsiveness, but young transgenic animals contained fewer mature B- and T-cells. Although spontaneous tumours were infrequent, lymphomagenesis was much more rapid in mice that co-expressed the cyclin D1 transgene and a myc transgene than in mice expressing either transgene alone. Moreover, the spontaneous lymphomas of myc transgenic animals often ectopically expressed the endogenous cyclin D1 gene. These findings indicate that this G1 cyclin can modulate differentiation and collaborate with myc-like genes in oncogenesis.  相似文献   

12.
Mx proteins are interferon-induced members of the dynamin superfamily of large guanosine triphosphatases. These proteins have attracted much attention because some display antiviral activity against pathogenic RNA viruses, such as members of the orthomyxoviridae, bunyaviridae, and rhabdoviridae families. Among the diverse mammalian Mx proteins examined so far, we have recently demonstrated in vitro that the Bos taurus isoform 1 (boMx1) is endowed with exceptional anti-rabies-virus activity. This finding has prompted us to seek an appropriate in vivo model for confirming and evaluating gene therapy strategies. Using a BAC transgene, we have generated transgenic mouse lines expressing the antiviral boMx1 protein and boMx2 proteins under the control of their natural promoter and short- and long-range regulatory elements. Expressed boMx1 and boMx2 are correctly assembled, as deduced from mRNA sequencing and western blotting. Poly-I/C-subordinated expression of boMx1 was detected in various organs by immunohistochemistry, and transgenic lines were readily classified as high- or low-expression lines on the basis of tissue boMx1 concentrations measured by ELISA. Poly-I/C-induced Madin-Darby bovine kidney cells, bovine turbinate cells, and cultured cells from high-expression line of transgenic mice were found to contain about the same concentration of boMx1, suggesting that this protein is produced at near-physiological levels. Furthermore, insertion of the bovine Mx system rendered transgenic mice resistant to vesicular-stomatitis-virus-associated morbidity and mortality, and embryonic fibroblasts derived from high-expression transgenic mice were far less permissive to the virus. These results demonstrate that the Bos taurus Mx system is a powerful anti-VSV agent in vivo and suggest that the transgenic mouse lines generated here constitute a good model for studying in vivo the various antiviral functions—known and yet to be discovered—exerted by bovine Mx proteins, with priority emphasis on the antirabic function of boMx1. M.-M. Garigliany and K. Cloquette have contributed equally to the study.  相似文献   

13.
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo.  相似文献   

14.
C-erbB-2 is a human protooncogene homologous with the well-known c-erbB. Genes and gene products of the EGF receptor and c-erbB are known to be closely related and to be closely homologous in their intracellular domain. Inspection of the deduced amino acid sequence suggested that the c-erbB-2 gene encodes a receptor for a yet unidentified growth factor. An immunohistological study was performed by introducing an antibody raised in the rabbit by immunization with a synthetic peptide corresponding to a part of the intracytoplasmic domain of predicted gene product. Specimens from 13 normal human organs, fresh frozen tissue from 41 surgically excised human malignant tumors and eight cell lines maintained in nude mice were studied. Positive staining was found in 4 of the 41 (9.8%) malignant tumors. All of the positive tumors were adenocarcinomas and two adenocarcinoma cell lines were also positive. Amongst the normal human tissues, epithelial cells in stomach, small and large intestine were faintly stained. When the positively stained cell lines were studied by immunoelectronmicroscopy, the reaction was most prominent in the membrane of microvilli, but part of the nuclear membrane, the endoplasmic reticulum and the outer cell membrane were also stained. DNA and mRNA blot assays, as well as our immunoprecipitation test, revealed that immunohistologically positive cell lines bore amplified c-erbB-2 DNA, c-erbB-2 mRNA and 185 kD protein which is supposed to be the gene product, while negative cell lines did not.  相似文献   

15.
Three AKR lymphomas displaying B cell and T cell characteristics have been described. Because of the proclivity of normal AKR/J mice to develop T cell lymphomas, and the rarity of lymphomas with dual characteristics, the B cell markers of these tumors were studied more intensively. Fluorescence data with class-specific anti-immunoglobulin reagents demonstrated that the tumor cells stained only with class-specific anti-IgM reagents. Because of the possibility that the surface Ig was passively acquired and of reports that certain anti-mu-chain sera react with "IgT", chemical characterization of the immunoglobulin molecules was performed. Using 3H-leucine internal labeling, we showed that all three tumor lines synthesized the immunoglobulin found on their surface, and that the immunoglobulin had the chemical and immunologic characteristics most typical of monomeric surface IgM, and was composed of mu-chains and light chains. The Ia antigens found on these cells were also examined. These antigens were also synthesized by the cells and were present in the same molecular form and in the same approximate quantity as Ia antigens on normal spleen cells.  相似文献   

16.
17.
18.
We have generated mice that lack the ability to produce immunoglobulin (Ig) kappa light chains by targeted deletion of J kappa and C kappa gene segments and the intervening sequences in mouse embryonic stem cells. In wild type mice, approximately 95% of B cells express kappa light chains and only approximately 5% express lambda light chains. Mice heterozygous for the J kappa C kappa deletion have approximately 2-fold more lambda+ B cells than wild-type littermates. Compared with normal mice, homozygous mutants for the J kappa C kappa deletion have about half the number of B cells in both the newly generated and the peripheral B cell compartments, and all of these B cells express lambda light chains in their Ig. Therefore, homozygous mutant mice appear to produce lambda-expressing cells at nearly 10 times the rate observed in normal mice. These findings demonstrate that kappa gene assembly and/or expression is not a prerequisite for lambda gene assembly and expression. Furthermore, there is no detectable rearrangement of 3' kappa RS sequences in lambda+ B cells of the homozygous mutant mice, thus rearrangements of these sequences, per se, is not required for lambda light chain gene assembly. We discuss these findings in the context of their implications for the control of Ig light chain gene rearrangement and potential applications of the mutant animals.  相似文献   

19.
The nuclear proto-oncogene c-myb plays crucial roles in the growth, survival, and differentiation of hematopoietic cells. We established three lines of erythropoietin receptor-transgenic mice and found that one of them exhibited anemia, thrombocythemia, and splenomegaly. These abnormalities were independent of the function of the transgenic erythropoietin receptor and were observed exclusively in mice harboring the transgene homozygously, suggesting transgenic disruption of a certain gene. The transgene was inserted 77 kb upstream of the c-myb gene, and c-Myb expression was markedly decreased in megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs) of the homozygous mutant mice. In the bone marrows and spleens of the mutant mice, numbers of megakaryocytes were increased and numbers of erythroid progenitors were decreased. These abnormalities were reproducible in vitro in a coculture assay of MEPs with OP9 cells but eliminated by the retroviral expression of c-Myb in MEPs. The erythroid/megakaryocytic abnormalities were reconstituted in mice in vivo by transplantation of mutant mouse bone marrow cells. These results demonstrate that the transgene insertion into the c-myb gene far upstream regulatory region affects the gene expression at the stage of MEPs, leading to an imbalance between erythroid and megakaryocytic cells, and suggest that c-Myb is an essential regulator of the erythroid-megakaryocytic lineage bifurcation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号