首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ouabain sensitive and K+-dependent p-nitrophenyl-phosphatase was inhibited by polyamines. The order of effectiveness was spermine spermidine putrescine = cadaverine. The half maximum inhibition concentration of spermine was approximately 0.03 mM and 0.8 mM in the presence of 0.5 mM and 3.0 mM KCl in the reaction mixtures, respectively. Basic amino acids and hydroxylamine inhibited slightly. Other amines such as glycine and histamine were without effect. Spermine did not inhibit other membrane bound phosphatases, such as glucose-6-phosphatase, 5′-nucleotidase, alkaline phosphatase and ouabain insensitive p-nitrophenylphosphatase activity at pH 7.5  相似文献   

2.
Modulation of inositol phospholipid metabolism by polyamines.   总被引:4,自引:0,他引:4       下载免费PDF全文
At low concentrations of Mg2+, incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in plasma membranes isolated from human polymorphonuclear leucocytes was enhanced 2-4-fold by the polyamines spermidine and spermine. Polyamines had no effects on inositol phospholipid phosphorylation at high concentrations of Mg2+. At 1 mM-Mg2+, [32P]PIP2 synthesis was maximally enhanced by 2 mM-spermine and 5 mM-spermidine, whereas putrescine only slightly enhanced synthesis. Spermine decreased the EC50 (concn. for half-maximal activity) for Mg2+ in [32P]PIP2 synthesis from 5 mM to 0.5 mM. Spermine did not modulate the Km for ATP for [32P]PIP or [32P]PIP2 synthesis. Spermine also decreased the EC50 for PI in [32P]PIP synthesis. In contrast, spermine elevated the apparent Vmax, without affecting the EC50 for PIP, for [32P]PIP2 synthesis. Spermine and spermidine also inhibited the hydrolysis of [32P]PIP2 by phosphomonoesterase activity. Therefore polyamines appear to activate inositol phospholipid kinases by eliminating the requirements for super-physiological concentrations of Mg2+. Polyamine-mediated inhibition of polyphosphoinositide hydrolysis would serve to potentiate further their abilities to promote the accumulation of polyphosphoinositides in biological systems.  相似文献   

3.
1. Polyamines were found to be associated with microsomes of rat cerebral cortex, the amount of spermine being about four times that of spermidine. Cell sap contained more spermidine than spermine. 2. Both polyamines were able to stimulate the incorporation of [(14)C]valine into microsomes in vitro with a maximum rate equal to 250% of the control. Polyamines stimulated at concentrations close to the amount of spermine and spermidine naturally present in the system. 3. Spermine (0.05mm) was used to study the mechanism of action of polyamines. The increasing of microsome and cell-sap concentration facilitated the action of spermine, but the same process was inhibited by increasing pH5-enzyme concentration. 4. Spermine did not affect the association of [(14)C]valine with tRNA in cell sap, but increased the rate of aminoacyl-tRNA formation in pH5 enzyme preparations. However, this process was not affected in any case when incorporating microsomes were present. 5. It is suggested that microsomes are the main site of action of polyamines.  相似文献   

4.
The diamines putrescine and cadaverine and the polyamines spermine and spermidine inhibited the senescence of nonphotosynthetic cultures of Paul's Scarlet rose. Response was observed when the media of stationary phase cultures was adjusted to either 1 mM of cadaverine or putrescine; or 0.1 μM of either spermine or spermidine along with 2% sucrose in all cases. Senescence of the cultures was followed by microscopic examination of cell aliquots removed at 10 day intervals and treated with the vital stain, fluorescein diacetate.  相似文献   

5.
The interactions of polyamines with the lipolytic system were studied in isolated rat adipocytes. Spermine, spermidine and putrescine significantly inhibited adenosine deaminase-stimulated lipolysis. An antilipolytic effect of spermine was detectable at a concentration of 0.25 mM (P less than 0.05). At a concentration of 10 mM all three polyamines inhibited the stimulated lipolysis by 50-60% (P less than 0.001). In addition, spermine enhanced the antilipolytic sensitivity of insulin. Spermine (1 mM) decreased the half-maximal inhibitory concentration of insulin from 320 +/- 70 pM to 56 +/- 20 pM (P less than 0.01). The antilipolytic effects and the cyclic-AMP-lowering effects of the polyamines were almost completely prevented in the presence of different phosphodiesterase (PDE) inhibitors (3-isobutyl-1-methylxanthine and RO 20-1724) and, in addition, polyamines had no effect on lipolysis stimulated by dibutyryl cyclic AMP, indicating that polyamines may inhibit lipolysis by activating the PDE enzyme. This latter suggestion was confirmed by demonstrating that spermine (5 mM) significantly enhanced the low-Km PDE enzyme activity (P less than 0.01). Finally, the amounts of polyamines present in isolated adipocytes were measured, and the estimated cytoplasmic concentrations were 0.02 mM (putrescine), 0.86 mM (spermidine), and 1.0 mM (spermine). It is concluded that polyamines may possibly be involved in the physiological regulation of triacylglycerol mobilization in adipocytes.  相似文献   

6.
This study was designed to investigate the direction of redox reactions of spermine and spermidine in the presence of iron and copper. The redox activity of spermine and spermidine was assessed using a variety of methods, including their ability to: (1) reduce Fe(3+) to Fe(2+) ions; (2) protect deoxyribose from oxidation by Fe(2+)-ethylene diaminetetraacetic acid, Fe(3+)-ethylene diaminetetraacetic acid systems with and without H(2)O(2); (3) protect DNA from damage caused by Cu(2+)-H(2)O(2), and Fe(2+)-H(2)O(2) with and without ascorbic acid; (4) inhibit H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence; (5) scavenge diphenyl-picryl-hydrazyl radical. Spermine and spermidine at concentration 1mM reduced 1.8+/-0.3 and 2.5+/-0.1 nmol of Fe(3+) ions during 20 min incubation. Both polyamines enhanced deoxyribose oxidation. The highest enhancement of 7.6-fold in deoxyribose degradation was found for combination of spermine with Fe(3+)-ethylene diaminetetraacetic acid. An 10mM spermine and spermidine decreased CuSO(4)-H(2)O(2)-ascorbic acid- and FeSO(4)-H(2)O(2)-ascorbic-induced DNA damage by 73+/-6, 69+/-4% and 90+/-5, 53+/-4%, respectively. They did not protect DNA from CuSO(4)-H(2)O(2) and FeSO(4)-H(2)O(2). Spermine apparently increased the CuSO(4)-H(2)O(2)-dependent injury to DNA. Polyamines attenuated H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence. Total light emission from specimens containing 10mM spermine or spermidine was attenuated by 85.3+/-1.5 and 87+/-3.6%. During 20 min incubation 1mM spermine or spermidine decomposed 8.1+/-1.4 and 9.2+/-1.8% of diphenyl-picryl-hydrazyl radical. These results demonstrate that polyamines of well known anti-oxidant properties may act as pro-oxidants and enhance oxidative damage to DNA components in the presence of free iron ions and H(2)O(2).  相似文献   

7.
E F Wajnberg  J M Fagan 《FEBS letters》1989,243(2):141-144
Reticulocytes contain a soluble nonlysosomal proteolytic pathway that requires ATP and ubiquitin. Polyamines at physiological concentrations were found to inhibit rapidly the ATP-dependent proteolytic system in reticulocyte lysates; spermidine and putrescine inhibited this process by 26-72% and spermine by 71-96%. Spermine had little effect on the ATP-independent breakdown of oxidant-treated hemoglobin. By fractionating the ATP-dependent system, we show that polyamines inhibit the ATP-dependent degradation of ubiquitin-protein conjugates.  相似文献   

8.
Soybean plants (Glycine max L. Merr. cv. Tamahomare) accumulatesufficient putrescine and spermidine in their nodules to inhibitthe growth of bacteroids of Bradyrhizobium japonicum strain138NR. Gas-chromatographic analysis showed that the mature nodulesfrom 35-d-old plants contained approximately 1.5 µmoleseach of putrescine and spermidine per g fresh weight. Water-soluble(free) putrescine and spermidine were present at concentrationsof 0.39 and 0.13 µmoles per g fresh weight, respectively.Cadaverine and spermine were not detected in the nodules. Ina yeast-extract mannitol broth at a pH above 7.0, putrescine,cadaverine, spermidine, and spermine at more than 0.5, 0.2,0.05, and 0.05 mM, respectively, inhibited the growth of thebacteroids. The effect of the polyamines was bactericidal athigher concentrations. More than 95% of bacteroids were notable to form colonies on agar plates that contained 0.5 mM spermidineat pH 7.0. The high sensitivity to polyamines was a unique characteristicof the bacteroidform cells of this strain. The bacteroids losttheir sensitivity to the polyamines within 24 hours after theirisolation from nodules. The cultured cells of this strain multipliedin the presence of 2 mM spermidine or spermine. (Received January 28, 1993; Accepted June 14, 1993)  相似文献   

9.
1. The polyamines, putrescine, spermidine and spermine occur in free or acetylated form in a wide variety of living organisms. Putrescine is biosynthesized from ornithine or arginine; spermidine and spermine from methionine and either ornithine or arginine. 2. It is difficult to determine the intracellular distribution of polyamines since they are all very soluble in water and they are readily redistributed when cells are disrupted. Evidence suggests that a substantial proportion of the intracellular polyamines is attached to the ribosomes and that spermidine is not concentrated in the nucleus. 3. Polyamines bind strongly to both DNA and RNA. The strength of binding is:spermine > spermidine > putrescine. Polyamines stabilize the double helix of DNA, probably by forming a bridge across the narrow groove, by involving electrostatic bonding with the phosphate group. However, they do not appear to alter the overall conformation of DNA. Spermine enables single-stranded RNA to fold into a more compact configuration which is less susceptible to attack by ribonuclease. 4. Spermine and spermidine are able to stimulate the DNA primed RNA polymerase. They facilitate the removal of RNA from the DNA-RNA-enzyme complex. 5. Polyamines promote the association of ribosomal subunits and also the binding of amino acyl transfer RNA to ribosomes. They cause increased coding ambiguities in the process of translation in certain bacterial systems. 6. There is a close correlation between the intracellular concentration of spermidine and the rate of RNA synthesis both in rat liver and in Escherichia coli. Conditions which affect the rate of RNA synthesis also affect the concentration of free intracellular spermidine. 7. Bacteria usually contain putrescine and spermidine, whereas animal tissues contain spermine and spermidine. Spermidine probably fulfils the same role in both bacteria and animal tissues, but the presence of spermine, which is common to eucaryotes, is possibly associated with their more complex mechanisms for regulating RNA and protein synthesis.  相似文献   

10.
《Phytochemistry》1986,25(2):367-371
Di- and polyamines are effective scavengers of free radicals generated in a number of chemical and in vitro enzyme systems. Free radical production was quantified spectrophotometrically using nitroblue tetrazolium and cytochrome c or by electron spin resonance. Levels of superoxide radical formed either enzymatically with xanthine oxidase or chemically from riboflavin or pyrogallol were significantly inhibited by spermine, spermidine, putrescine and cadaverine at 10 and 50 mM. The more reactive hydroxyl radical generated by the Fenton reaction was also effectively scavenged by di- and polyamines. In addition, the production of superoxide radical by senescing microsomal membranes was inhibited by di- and polyamines, as was the superoxide-dependent conversion of 1- aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The efficacy of polyamine-scavenging appears to be correlated with the extent of amination suggesting the involvement of amino groups. It is also apparent that some of the physiological effects of polyamines, in particular their propensity to inhibit lipid peroxidation and retard senescence, may be attributable to their radical-scavenging capability.  相似文献   

11.
Oh  Tae Jeong  Kim  In Gyu 《Biotechnology Techniques》1998,12(10):755-758
Polyamines protected plasmid DNA strand breaks in vitro and aided the cell survival against irradiation in polyamine-deficient Escherichia coli mutant strain. DNA strand breaks were prevented 4–6 fold more by spermidine and spermine than by putrescine and cadaverine in the dithiothreitol/Fe(III)/O2 system. After UV-irradiation, the protection of DNA strand breaks by spermine and spermidine was twice as effective as that by putrescine and cadaverine. Survivability of polyamine-deficient Escherichia coli mutant cells grown in the medium containing putrescine and spermidine was 2.4- and 3.0-fold as high as in polyamine-depleted medium at a dose of 60 and 40 J/m2. After -irradiation to a dose of 80 Gy, cell survivals of a mutant strain were significantly increased to 7.7- and 23.8-fold by putrescine and spermidine, respectively. These results implicate the possibility that polyamines play a potent role in the protection of DNA or cell damage by radiation. © Rapid Science Ltd. 1998  相似文献   

12.
The ability of polyamines (putrescine, spermidine, and spermine) to modify tyrosine hydroxylase (TH) activity was examined in crude or purified enzyme preparation and in adrenal tissue slices. Polyamines showed biphasic effects on TH activity in vitro at physiological pH 7.0, with an inhibitory effect at low concentrations (<1 mM) and a stimulatory effect at high concentrations. The degree of both inhibition and stimulation produced by polyamines at low and high concentrations, respectively, were proportional to the number of the amino group in the polyamines (putrescine < spermidine < spermine). The degree of inhibition by polyamines was much greater with purified enzyme than with crude enzyme preparations. Tyrosine hydroxylation in situ in adrenal tissue slices was stimulated by polyamines without inhibition at any concentrations tested. This evidence suggests that TH molecules in vivo could interact with polyamines or polyamine-like substances which inhibit the TH activity at physiological concentrations less than 1 mM.  相似文献   

13.
At optimum magnesium, the translation of rat heart mRNA in the nuclease treated rabbit reticulocyte lysate system was inhibited by low concentrations of spermidine or spermine but not of putrescine. Spermidine and spermine cause a general reduction in the translation of all the heart mRNAs since no differential effects were observed when the translation products were examined by gel electrophoresis. Spermine was a five times more potent inhibitor than spermidine but no inhibition was obtained with N1-acetylspermidine or N1-acetylspermine. Since analyses of endogenous polyamines demonstrate that the inhibitory concentrations of spermine could be obtained by converting a small fraction of the endogenous spermidine to spermine, these results indicate that interconversions of the polyamines might be a sensitive regulatory mechanism for protein synthesis.  相似文献   

14.
The influence of polyamines on the various activities of DNA polymerase I from Escherichia coli (EC 2.7.7.7) has been investigated. For all high molecular weight DNAs spermine and spermidine caused up to 80% inhibition when present in high concentrations, i.e. above 1 mM for spermine and 2 mM for spermidine. In the presence of low concentrations of polyamines a small activation was seen for some DNAs. The diamines cadaverine and putrescine had little influence on the rate of synthesis with natural occurring DNAs. In the case of d(A--T)n the activation/inhibition was found to be markedly dependent on the molecular weight of the samples used. With a low molecular weight DNA, 5.6 S, addition of spermidine resulted in up to 3-fold stimulation of activity. The activation was dependent on the concentration of MgCl2 and ionic strength; increasing concentration of these gave a decrease in the degree of activation. Polyamines also had a dramatic effect on the rate of synthesis using the homopolymers (dA)n . (dT)10 and (rA)n . (dT)10 . (20:1) as primers. Putrescine, in particular, increased the activity up to 10-fold with (rA)n . (dT)10 and somewhat less for (dA)n . (dT)10. The apparent Km for the primer (rA)n . (dT)10 decreased approx. 35-fold in the presence of 6.6 mM putrescine. There was no influence on the apparent Km for dTTP. The influence of polyamines on both the 5' leads to 3' and 3' leads to 5' nuclease activity was also investigated. Inhibition of nuclease activity was observed in the presence of polyamines, particularly with spermine. Thus with d(A--T)n and T7 DNA as substrates addition of 0.7 mM spermine resulted in almost complete inhibition of the activity. The dramatic inhibition observed with high concentrations of spermine (spermidine) both in the case of polymerizing and nuclease activity is thought to be due to polyamine-induced aggregation of DNA molecules.  相似文献   

15.
1. The specificity of rat prostatic spermidine synthase and spermine synthase with respect to the amine acceptor of the propylamine group was studied. 2. Spermidine synthase could use cadaverine (1,5-diaminopentane) instead of putrescine, but the Km for cadaverine was much greater and the rate with 1mM-cadaverine was only 10% of that with putrescine. 1,3-Diaminopropane was even less active (2% of the rate with putrescine) and no other compound tested (including longer alpha,omega-diamines, spermidine and its homologues and monoacetyl derivatives) was active. 3. Spermine synthase was equally specific. The only compounds tested that showed any activity were 1,8-diamino-octane, sym-homospermidine, sym-norspermidine and N-(3-aminopropyl)-cadaverine, which at 1mM gave rates 2, 17, 3 and 4% of the rate with spermidine respectively. 4. The formation of polyamine derivatives of cadaverine and to a very small extent of 1,3-diaminopropane was confirmed by exposing transformed mouse fibroblasts to these diamines when synthesis of putrescine was prevented by alpha-difluoromethylornithine. Under these conditions the cells accumulated significant amounts of N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine when exposed to cadaverine and small amounts of sym-norspermidine and sym-norspermine when exposed to 1,3-diaminopropane.  相似文献   

16.
The effects of polyamines on the oligomeric forms of protein phosphatase-1 (1G), protein phosphatase-2A (2A0, 2A1 and 2A2) and their free catalytic subunits (1C and 2AC) has been studied using homogeneous enzymes isolated from rabbit skeletal muscle. Spermine increased the activity of protein phosphatase-2A towards eight of nine substrates tested. Half-maximal activation was observed at 0.2 mM with optimal effects at 1-2 mM. Above 2 mM, spermine became inhibitory. The most impressive activation of protein phosphatase-2A was obtained with glycogen synthase, especially when phosphorylated at sites-3 (8-15-fold with protein phosphatase-2A1) and phenylalanine hydroxylase (6-7-fold with protein phosphatase-2A1) as substrates. Activation of protein phosphatases 2A0, 2A1 and 2A2 was greater than that observed with 2AC. Spermine was a more potent activator than spermidine, while putrescine had only a small effect. Qualitatively similar results were obtained with five other substrates, although maximal activation was much less (1.3-3-fold with protein phosphatase-2A1). The rate of dephosphorylation of glycogen phosphorylase was decreased by spermine, inhibition being more pronounced with protein phosphatase-2AC than with 2A0, 2A1 and 2A2. Spermine (I50 = 0.1 mM with protein phosphatase-2AC) was a more potent inhibitor than spermidine (I50 = 0.9 mM) or putrescine (I50 = 8 mM). Partially purified preparations of protein phosphatases-2A0, 2A1 and 2A2 from from rat liver were affected by spermine in a similar manner to the homogeneous enzymes from rabbit skeletal muscle. Spermine did not activate protein phosphatase-1 to the same extent as protein phosphatase-2A. Greatest stimulation (2.5-fold) was again observed with glycogen synthase labelled in sites-3, with half-maximal activation at 0.2 mM and optimal effects at 1-2 mM spermine. Spermine was a much more effective stimulator than spermidine, while putrescine was ineffective. Very similar results were obtained with protein phosphatases 1G and 1C. With four other substrates maximal activation by spermine was less than 1.5-fold, while the dephosphorylation of glycogen synthase (labelled in site-2), phosphorylase kinase, pyruvate kinase and glycogen phosphorylase were inhibited. Spermine (I50 = 0.04 mM) was a more potent inhibitor of the dephosphorylation of glycogen phosphorylase than spermidine (I50 = 0.9 mM) or putrescine (I50 = 9 mM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

18.
Tomosugi M  Ichihara K  Saito K 《Planta》2006,223(2):349-358
The major fatty acid component of castor (Ricinus communis L.) oil is ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid), and unsaturated hydroxy acid accounts for >85% of the total fatty acids in triacylglycerol (TAG). TAG had a higher ricinoleate content at position 2 than at positions 1 and 3. Although lysophosphatidic acid (LPA) acyltransferase (EC 2.3.1.51), which catalyzes acylation of LPA at position 2, was expected to utilize ricinoleoyl-CoA preferentially over other fatty acyl-CoAs, no activity was found for ricinoleoyl-CoA in vitro at concentrations at which other unsaturated acyl-CoAs were incorporated rapidly. However, activity for ricinoleoyl-CoA appeared with addition of polyamines (putrescine, spermidine, and spermine), while polyamines decreased the rates of incorporation of other acyl-CoAs into position 2. The order of effect of polyamines on LPA acyltransferase activity was spermine > spermidine >> putrescine. At concentrations of spermine and spermidine of >0.1 mM, ricinoleoyl-CoA served as an effective substrate for LPA acyltransferase reaction. The concentrations of spermine and spermidine in the developing seeds were estimated at ∼0.09 and ∼0.63 mM, respectively. These stimulatory effects for incorporation of ricinoleate were specific to polyamines, but basic amino acids were ineffective as cations. In contrast, in microsomes from safflower seeds that do not contain ricinoleic acid, spermine and spermidine stimulated the LPA acyltransferase reaction for all acyl-CoAs tested, including ricinoleoyl-CoA. Although the fatty acid composition of TAG depends on both acyl-CoA composition in the cell and substrate specificity of acyltransferases, castor bean polyamines are crucial for incorporation of ricinoleate into position 2 of LPA. Polyamines are essential for synthesis of 2-ricinoleoyl phosphatidic acid in developing castor seeds.  相似文献   

19.
Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines   总被引:6,自引:0,他引:6  
Pyruvate dehydrogenase phosphatase requires Mg2+ or Mn2+, and its activity in the presence of Mg2+ is markedly stimulated by Ca2+. At saturating Mg2+ and Ca2+ concentrations, the polyamines spermine, spermidine and putrescine stimulated the activity of pyruvate dehydrogenase phosphatase 1.5- to 3-fold. Spermine was the most active of the polyamines. At a physiological concentration of Mg2+ (1 mM) and saturating Ca2+ concentration, the stimulation by 0.5 mM spermine was 4- to 5-fold, and at 0.3 mM Mg2+, the stimulation was 20- to 30-fold. In the absence of Mg2+ or Ca2+, spermine had no effect. These results suggest that a polybasic factor may be involved in the regulation of pyruvate dehydrogenase phosphatase activity.  相似文献   

20.
The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca2+ channels (VACCs) and voltage-activated Na+ channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concentration-dependent manner with IC50s for spermine, spermidine, and putrescine of 4.7 ± 0.7, 11.2 ± 1.4, and 90 ± 36 mM, respectively. Polyamines caused inhibition by shifting the VACC half-activation voltage (V0.5) to depolarized potentials and by reducing total VACC permeability. The shift was described by Gouy-Chapman-Stern theory with a surface charge density of 0.120 ± 0.005 e- nm-2 and a surface potential of -19 mV. Attenuation of spermidine and spermine inhibition of VACC at decreased pH was explained by H+ titration of surface charge. Polyamine-mediated effects also decreased at elevated pH due to the inhibitors having lower valence and being less effective at screening surface charge. Polyamines affected VANC currents indirectly by reducing TTX inhibition of VANCs at high pH. This may reflect surface charge induced decreases in the local TTX concentration or polyamine-TTX interactions. In conclusion, polyamines inhibit neuronal VACCs via complex interactions with extracellular H+ and Ca. Many of the observed effects can be explained by a model incorporating polyamine binding, H+ binding and surface charge screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号