首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Summary When E. coli F+ cells carrying the dna-167 or dnaC2 mutation, which causes the temperature-sensitive initiation of DNA replication, are exposed to a non-permissive temperature to stop the replication of chromosome and F factor, and then transferred back to a permissive temperature with the addition of chloramphenicol, one round of the chromosomal replication occurs, but further replication is inhibited. Under these conditions, F DNA replicates coincidentally with the initiation of the chromosomal replication in both strains. When rifampicin is added to the cells upon lowering of the temperature, the chromosome can not replicate in the F+ dna-167 strain, but can do so in the F+ dnaC2 strain. F DNA can replicate in both of the mutant strains under these conditions.  相似文献   

2.
Three thermosensitive deoxyribonucleic acid (DNA) initiation mutants of Escherichia coli exposed to the restrictive temperature for one to two generations were examined for the ability to reinitiate DNA replication after returning to the permissive temperature in the presence of rifampin, chloramphenicol, or nalidixic acid. Reinitiation in the dnaA mutant was inhibited by rifampin but not by chloramphenicol, whereas renitiation was not inhibited by rifampin but not by chloramphenicol, whereas reinitiation was not inhibited in two dnaC mutants by either rifampin or chloramphenicol. To observe the rifampin inhibition, the antibiotic must be added at least 10 min before return to the permissive temperature. The rifampin inhibition of reinitiation was not observed when a rifampin-resistant ribonucleic acid ((RNA) polymerase gene was introduced into the dnaA mutant, demonstrating that RNA polymerase synthesizes one or more RNA species required for the initation of DNA replication (origin-RNA). Reinitiation at 30 degrees C was not inhibited by streptolydigin in a stretolydigin-sensitive dnaA muntant. Incubation in the presence of nalidixic acid prevented subsequent reinitiation in the dnaC28 mutant but did not inhibit reinitiation in the dnaA5 muntant. These results demonstrate that the dnaA gene product acts before or during the synthesis of an origin-RNA, RNA polymerase synthesizes this origin RNA, and the dnaC gene product is involved in a step after this RNA synthesis event. Furthermore, these results suggest that the dnaC gene product is involved in the first deoxyribounucleotide polymerization event wheareas the dnaA gene product acts prior to this event. A model is presented describing the temporal sequence of events that occur during initiation of a round of DNA replication, based on results in this and the accompanying paper.  相似文献   

3.
We asked if phiX174 single-stranded DNA synthesis could reinitiate at the nonpermissive temperature in dnaB and dnaC temperature-sensitive host mutants. The rates of single-stranded DNA synthesis were measured after the removal of chlorampheicol that had been added at various times after infection to specifically stop this stage of phiX174 DNA synthesis. Reinitiation was not defective in either mutant host. Our data suggested that the reinitiation of the single-stranded stage of phiX174 DNA synthesis in these experiments was analogous to the normal initiation of this stage of phiX174 DNA synthesis in infections without chloramphenicol. Assuming this to be the case, we conclude that the host cell dnaB and dnaC proteins are not essential for the normal initiation of the single-stranded synthesis stage of phiX174 DNA synthesis. In related experiments we observed that in the dnaC mutant host at the permissive temperature, phiX174 replicative form DNA synthesis continued at its initial rate even during the single-stranded DNA synthesis stage. This indicates that these two stages of phiX174 DNA synthesis are not necessarily mutually exclusive.  相似文献   

4.
5.
Summary The capacity for initiation and subsequent chain elongation was examined in several DNA temperature sensitive mutants of Escherichia coli after the mutants had been held at nonpermissive temperature for approximately 1.5 generation equivalents and then returned to permissive temperature in the presence of chloramphenicol. The results obtained indicate that 4–5 sets of replication forks can be initiated after return to permissive temperature in the presence of chloramphenicol but the forks apparently become stalled and fail to complete chromosomal replication in the presence of chloramphenicol. In temperature reversible dnaA mutants, once the chloramphenicol is removed the forks appear to be able to resume replication at the nonpermissive temperature. The relationship between premature initiation and premature chain termination is discussed.  相似文献   

6.
A mutant of Bacillus subtilis, dna-1, which cannot initiate new rounds of DNA replication (obtained from N. Sueoka) was lysogenized with wild-type phi 105 and with the heat-inducible mutant phi 105 cts23. Bacteria were incubated at the permissive temperature in the presence of chloramphenicol and then shifted to the nonpermissive temperature where induction of phi 105 cts23 occurs. DNA made after the shift was labeled with a density label, and the distribution of bacterial and phage markers in replicated and unreplicated DNA was determined. Similar experiments were performed with nonlysogenic dna-1 infected with phage phi 105 cts23 after the temperature shift. The results show that after induction of phi 105 cts23 prophage, bacterial markers on either side of the prophage replicate at an increased rate compared to more distant markers. No selective stimulation of bacterial DNA synthesis was observed on infection or after shifting bacteria lysogenic for noninducible phage to the higher temperature. Attempts to suppress the initiation mutation dna-1 by phage phi 105 were unsuccessful.  相似文献   

7.
8.
Summary A mutant (dna-1) of Salmonella typhimurium defective in DNA synthesis is described. DNA synthesis is stopped in this mutant at 42° after a residual synthesis amounting to about 50 to 60% of the total cellular DNA in minimal medium and about 120 to 200% in a medium enriched with amino acids. Reshift back to permissive temperature after the inhibition of DNA synthesis at 42° allows for recovery of DNA synthesis after a lag of about 30 min. Protein synthesis is required during that lag for the recovery of DNA synthesis at permissive temperature. The density transfer experiments indicate that in the mutant dna-1 chromosome termini are replicated normally at 42° while the initiation of new rounds of replication is inhibited although the mutation is probably leaky at this temperature. The mutant is hypersensitive to sodium deoxycholate at 42° which suggests alteration of the membrane structure.  相似文献   

9.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

10.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.  相似文献   

11.
In a dnaCts mutant of E. coli, the reinitiation of DNA synthesis, which occurred by the shift of the culture from a restrictive temperature to a permissive temperature, was markedly prevented by habakacin, dibekacin, kanamycin, and gentamicin. On the contrary, chloramphenicol did not inhibit the reinitiation synthesis for 30 min. In a parallel experiment, leucine uptake into protein was profoundly blocked by chloramphenicol, but only slightly by habekacin. Habekacin did not significantly affect DNA elongation of the cells at a restrictive temperature. We propose that inhibition of initiation of replication by aminoglycoside antibiotics is related to their lethality.  相似文献   

12.
Beverly Wolf 《Genetics》1972,72(4):569-593
A temperature sensitive strain of E. coli K12 has been isolated in which residual DNA synthesis occurs at the 40 degrees C restrictive temperature; syntheses of RNA, protein and DNA precursors are not directly affected. The mutation has been designated dna-325 and is located at 89 min on the E. coli map in the same region where the dnaC locus is found. dnaC mutants are considered to be defective in DNA initiation. Some of the data are consistent with the view that the dna-325 mutation is temperature sensitive in the process of DNA initiation rather than DNA chain elongation: (1) more than two cell divisions occur after a shift to 40 degrees C; (2) upon a shift down to 30 degrees C, cell division occurs again only after the DNA content of the cells has doubled; (3) 80% more DNA is made at 30 degrees C in the presence of chloramphenicol after prior inhibition of DNA synthesis at 40 degrees C. These three observations indicate that rounds of DNA replication were completed at 40 degrees C. Also (4) infective lambda particles can be made at 40 degrees C long after bacterial DNA replication has ceased. It appears however that some DNA initiation can occur at 40 degrees C since (1) a limited amount of DNA synthesis does occur at 40 degrees C after prior alignment of the chromosomes by amino acid starvation at 30 degrees C, and (2) after incubation in bromouracil at the restrictive temperature, heavy DNA is found with both strands containing bromouracil.  相似文献   

13.
Summary An Escherichia coli mutant defective in replication of the chromosome has been isolated from temperature-sensitive mutants that cannot support colicin E1 plasmid DNA synthesis in the presence of chloramphenicol. Cellular DNA synthesis of the mutant ceases almost immediately after transfer to the nonpermissive temperature. The defect is due to a single mutation, dna-59, which is located close to the sites of dnaA mutations and a cou R mutation conferring DNA gyrase with resistance to coumermycin. The dna-59 mutant is not able to support DNA synthesis of phage at the high temperature. The mutant also restricts growth of X174 phage at the high temperature, but permits formation of supercoiled closedcircular duplex replicative intermediates. T7 phage can grow on the mutant even at the high temperature.A specialized transducing phage imm 21[tna dnaA]#2 (Miki et al., 1978) supports growth of dna-59, dnaA46 and dna-167 cells at the high temperature. Some of the EDTA-resistant derivatives of the phage have lost part or all of the dnaA gene, but carry gene function complementing the defect of dna-59 cells, as judged by conversion of the above dna strains to wild type cells by phage infection, and by suppression of the loss of viability of dna-59 cells at the high temperature by phage infection. The gene containing the dna-59 mutation site is thus distinct from the dnaA gene. Since the dna-59 mutation does not affect expression of the cou r gene of DNA gyrase, which is another known gene involved in DNA synthesis near the dnaA gene, this mutation is probably in a new gene, dnaN. From analysis of the suppression activities of imm 21[tna dnaA]#2 phage and its deletion derivatives against dnaN59 cells, it is suggested that the expression of the dnaN gene function is reduced by deletion in the dnaA region.  相似文献   

14.
Cell division properties of Escherichia coli B/r containing either a dnaC or a dnaI mutation were examined. Incubation at nonpermissive temperature resulted in the eventual production of cells of approximately normal size, or slightly smaller, which lacked chromosomal DNA. The cell division patterns in cultures which were grown at permissive temperature and then shifted to nonpermissive temperature were consistent with: first, division and equipartition of chromosomes by cells which were in the C and D periods at the time of the shift; second, an apparent delay in cell division; and third, commencement of the formation of chromosomeless cells. In glucose-grown cultures of the dnaI mutant, production of chromosomeless cells continued for at least 120 min, whereas in the dnaC mutant chromosomeless cells were formed during a single interval between 110 and 130 min after the temperature shift. The results are discussed in light of the hypothesis that replication of a specific chromosomal region is not an obligatory requirement for the initiation and completion of the processes leading to division in a cell which contains at least one functioning chromosome.  相似文献   

15.
Genetic control of DNA initiation in Escherichia coli   总被引:37,自引:0,他引:37  
We describe the isolation, and properties of a mutant (CT28) of Escherichia coli with a temperature-sensitive defect in DNA initiation that is reversible. The mutation (dna-28) responsible for this defect is shown to be located in the same region of the map as the dnaC group of DNA initiation mutants.A terminalized culture of CT28 initiates DNA synthesis synchronously immediately upon lowering the temperature, and will do so in the presence of chloram-phenicol.During prolonged incubation at the non-permissive temperature, the cells accumulate a capacity to initiate multiple rounds of replication per chromosome.The variation in the susceptibility of the argH? and thyA? alleles to reversion by pulse mutagenesis with nitrosoguanidine during a synchronous round of DNA replication, suggests that this round of replication is bidirectional and commences from an origin in the vicinity of 60 to 65 minutes.CT28 contains two temperature-sensitive mutations. These have been mapped and separated into two derivative strains. One of these, CT28-3b, carries the dna-28 mutation of the C locus, and like the parental double mutant is reversibly temperature-sensitive for an initiation function; but it is more temperature-sensitive than either the double mutant or the other single mutant derivative, CT28-1. The other, CT28-1, is not defective in DNA replication or initiation of replication at the non-permissive temperature.  相似文献   

16.
Escherichia coli strains with mutations in genes dnaB, dnaC, and dnaG were tested for their capacity to replicate pSC101 deoxyribonucleic acid (DNA) at a nonpermissive temperature. Only a small amount of radioactive thymine was incorporated into pSC101 DNA in the dna mutants at 42 degrees C, whereas active incorporation into plasmid DNA took place in wild-type strains under the same conditions. The effects of the dnaB and dnaC mutations were greater on plasmid DNA synthesis than on host chromosomal DNA synthesis, suggesting that these gene products are directly involved in the process of pSC101 DNA replication. In dnaG mutants, both plasmid and chromosomal DNA synthesis were blocked soon after the shift to high temperature; although the extent of inhibition of the plasmid DNA synthesis was greater during the early period of temperature shift to 42 degrees C as compared with that of the host DNA synthesis, during the later period it was less. It was found that the number of copies of pSC101 per chromosome in dnaA and dnaC strains, grown at 30 degrees C, was considerably lower than that in wildtype strains, suggesting that the replication of pSC101 in these mutant strains was partially suppressed even under the permissive conditions. No correlation was found between the number of plasmid copies and the tetracycline resistance level of the host bacterium.  相似文献   

17.
Fast-sedimenting forms of bacteriophage phiX174 double-stranded replicative-form DNA observed in normal infections continued to accumulate at the nonpermissive temperature in a temperature-sensitive dnaC mutant of Escherichia coli. These complex molecules accounted for up to half of the DNA synthesized during short pulses at the nonpermissive temperature. They were the dead-end products of DNA synthesis, not intermediates in normal replicative-form replication. The data suggest that these higher-than-normal-molecular-weight DNA molecules result from abnormal initiation of phiX174 replicative-form DNA replication.  相似文献   

18.
Genetic and phenotypic characterization of dnaC mutations.   总被引:9,自引:3,他引:6       下载免费PDF全文
The dna-1, dna-2, dna-7, and dna-28 mutations, all of which are located near min 89.5 on the E. coli linkage map, have been characterized further. As previously demonstrated for dna-2 and dna-28, neither the dna-1 nor dna-7 mutation affects the ability of a strain to produce bacteriophage lambda at temperatures non-permissive for the continued replication of the bacterial chromosome. The reported temperature-sensitive inhibition of lambda production in a strain carrying dna-7 is shown to be a consequence of a thermosensitive host specificity mutation in the hsm gene and not of the dna-7 mutation. The four dna mutations are recessive to the wild type and define a single dnaC cistron according to standard complementation criteria. Unlike other characterized dnaC mutants, however, strains carrying the dnaC1 or dnaC7 alleles exhibit an abrupt cessation of deoxyribonucleic acid synthesis at 42 C that appears to be more compatible with a defect in deoxyribonucleic acid chain elongation rather than in initiation. The possibility that the apparent elongation defect is actually a composite effect of residual synthesis and deoxyribonucleic acid degradation is raised by the net deoxyribonucleic acid degradation observed in the dnaC1 strain at 42 C. Several alternative possibilities for the function of the dnaC gene product are suggested.  相似文献   

19.
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaC mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. Parental replicative form synthesis is not temperature sensitive. Single-stranded virus DNA continues to be synthesized for at least 45 min after shifting to the nonpermissive temperature late in infection. In contrast, the replication of the replicative form terminates within 5 min after shifting to the nonpermissive temperature.  相似文献   

20.
The initiation process of deoxyribonucleic acid (DNA) replication in Escherichia coli has been studied using the thermoreversible dna initiation mutant E. coli HfrHl65/120/6 dna-252. This dna mutation was incorrectly classed as a dnaA mutation. Biochemical and genetic evidence suggests that the dna-252 mutant is a novel dnaB mutant, possessing phenotypic properties which distinguish it from other dnaB mutants. Sensitivity of reinitiation in the dna-252 mutant to specific inhibitors of protein, ribonucleic acid (RNA), and DNA synthesis was studied. Reinitiation is shown to be sensitive to rifampin and streptolydigin but not to cholramphenicol. Thus, the dna-252 gene product appears to be required during the initiation process for a step occurring either before or during synthesis of an RNA species (origin-RNA). Using reversible inhibition of RNA synthesis by streptolydigin of a streptolydigin-sensitive derivative of the dna-252 mutant, the dna-252 gene product is shown to be directly involved in the synthesis of an orgin-RNA species. These results are included in a schematic model presented in the accompanying paper of the temporal sequence of events occurring during the initiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号