共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteriophage G4 DNA synthesis in temperature-sensitive dna mutants of Escherichia coli. 总被引:2,自引:4,他引:2
下载免费PDF全文

The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed. 相似文献
2.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication. 相似文献
3.
4.
5.
DNA polymerase I and the bypassing of RecA dependence of constitutive stable DNA replication in Escherichia coli rnhA mutants. 总被引:1,自引:3,他引:1
下载免费PDF全文

In Escherichia coli rnhA mutants, several normally repressed origins (oriK sites) of DNA replication are activated. The type of DNA replication initiated from these origins, termed constitutive stable DNA replication, does not require DnaA protein or the oriC site, which are essential for normal DNA replication. It requires active RecA protein. We previously found that the lexA71(Def)::Tn5 mutation can suppress this RecA requirement and postulated that the derepression of a LexA regulon gene(s) leads to the activation of a bypass pathway, Rip (for RecA-independent process). In this study, we isolated a miniTn10spc insertion mutant that abolishes the ability of the lexA(Def) mutation to suppress the RecA requirement of constitutive stable DNA replication. Cloning and DNA sequencing analysis of the mutant revealed that the insertion occurs at the 3' end of the coding region of the polA gene, which encodes DNA polymerase I. The mutant allele, designated polA25::miniTn10spc, is expected to abolish the polymerization activity but not the 5'-->3' or 3'-->5' exonuclease activity. Thus, the Rip bypass pathway requires active DNA polymerase I. Since the lethal combination of recA(Def) and polA25::miniTn10spc could be suppressed by derepression of the LexA regulon only when DNA replication is driven by the oriC system, it was suggested that the bypass pathway has a specific requirement for DNA polymerase I at the initiation step in the absence of RecA. An accompanying paper (Y. Cao and T. Kogoma, J. Bacteriol. 175:7254-7259, 1993) describes experiments to determine which activities of DNA polymerase I are required at the initiation step and discusses possible roles for DNA polymerase in the Rip bypass pathway. 相似文献
6.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation. 相似文献
7.
Mutants of Escherichia coli lacking RNase HI activity and cells induced for the SOS response express modes of DNA replication independent of protein synthesis, called constitutive and induced stable DNA replication, respectively. We report here that mutants deleted for the polA gene express induced stable DNA replication at approximately 25-fold the rate of wild-type cells, whereas constitutive stable DNA replication is not enhanced. 相似文献
8.
9.
Sukhodolets VV 《Genetika》2006,42(7):869-878
In a number of works dealing with the relationship between replication and recombination in bacteria, it is assumed that recombinations permit the replication forks to resume moving after having stopped at the damage sites of the template DNA. As an evidence for recombination occurring during DNA replication, the involvement in this process of proteins RuvABC and RecG, providing processing of the Holliday junctions after recombination, is considered. However, it has been shown that these proteins are not essential for resuming DNA synthesis after an exposure of bacteria to UV light. These data cast doubt on the necessity of recombination for reactivation of replication initiated in the oriC region. Studying recombination in tandem duplications in Escherichia coli showed that during replication, unequal crossing over occurs between direct DNA repeats of sister chromosomes. In wild strains, this crossing over results in tandem duplications, thereby enhancing the expression of certain genes. Thus, recombination of two types occurs during DNA replication: unequal crossing over leading to duplications and homologous exchange, responsible for post-replication DNA repair. The unequal exchange constitutes a component of SOS response of the cell to deterioration of the environment. 相似文献
10.
11.
Heinz Schuster Marianne Schlicht Erich Lanka Maria Mikolajczyk Claus Edelbluth 《Molecular & general genetics : MGG》1977,151(1):11-16
Summary An Escherichia coli K12 dnaB dnaC mutant was constructed by P1 transduction of the dnaC allele into a dnaB recipient strain dnaB dnaC transductants were discriminated from dnaB mutants by their inability to grow at 40° C after lysogenization with phage P1bac. The dnaB dnaC mutant character was verified by 1. P1 transduction, and 2. by in vitro complementation with dnaB and dnaC wild type protein fractions.DNA synthesis was studied in strains containing dnaB, dnaC, or dnaB dnaC alleles in an otherwise uniform genetic background with the dnaB character either unsuppressed or suppressed by P1bac prophage. Degradation at 42° C of [3H]-thymidine pulselabeled DNA in dnaB and dnaB dnaC mutants is suppressed by P1bac. However, unlike the dnaC mutant, the P1bac lysogen of the dnaB dnaC mutant exhibits an abrupt cessation of DNA synthesis and less residual cell divisions at 42° C indicating an inhibition of DNA chain elongation rather than a defect in DNA initiation. It is suggested that denaturation of the dnaB protein affects the dnaC function. 相似文献
12.
W Messer 《Journal of bacteriology》1987,169(8):3395-3399
13.
14.
When initiation of DNA replication is inhibited in wild-type Escherichia coli cells by rifampin or chloramphenicol, completion of ongoing rounds of replication (runout of replication) leads to cells containing two, four, or eight fully replicated chromosomes, as measured by flow cytometry. In recombination-deficient recA strains, a high frequency of cells with three, five, six, or seven fully replicated chromosomes was observed in addition to cells with two, four, or eight chromosomes. recA mutants affected only in the protease-stimulating function behaved like wild-type cells. Thus, in the absence of the recombinase function of RecA protein, the frequency of productive initiations was significantly reduced compared with that in its presence. DNA degradation during runout of replication in the presence of rifampin was about 15%. The DNA degradation necessary to account for the whole effect described above was in this range or even lower. However, a model involving selective and complete degradation of partially replicated chromosomes is considered unlikely. It is suggested that the lack of RecA protein causes initiations or newly formed replication forks to stall but remain reactivatable for a period of time by functional RecA protein. 相似文献
15.
16.
17.
The purified DnaA protein has a high affinity for cyclic AMP (cAMP). Using equilibrium dialysis, we determined the K(A) value for cAMP as 0.819 muM(-1). The number of cAMP binding sites per DnaA protein molecule was calculated to be 1.04. This binding was quite specific for cAMP. ATP was also bound by DnaA protein and inhibited cAMP binding. This inhibition was non-competitive in nature with an inhibition constant (K(i)) of about 8.25 muM. However, in vivo we have found not only that the DnaA protein level is reduced in a cyclase deletion mutant strain, Delta++ cya, but also that DnaA protein is not degraded. The Delta cya mutants of E. coli are unable to continue DNA synthesis in the absence of de novo protein synthesis and the initiation of DNA replication in these mutants takes place from oriC. 相似文献
18.
The viability of the topA mutants lacking DNA topoisomerase I was thought to depend on the presence of compensatory mutations in Escherichia coli but not Salmonella typhimurium or Shigella flexneri. This apparent discrepancy in topA requirements in different bacteria prompted us to reexamine the topA requirements in E. coli. We find that E. coli strains bearing topA mutations, introduced into the strains by DNA-mediated gene replacement, are viable at 37 or 42 degrees C without any compensatory mutations. These topA(-) cells exhibit cold sensitivity in their growth, however, and this cold sensitivity phenotype appears to be caused by excessive negative supercoiling of intracellular DNA. In agreement with previous results (Zhu, Q., Pongpech, P., and DiGate, R. J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9766-9771), E. coli cells lacking both type IA DNA topoisomerases I and III are found to be nonviable, indicating that the two type IA enzymes share a critical cellular function. 相似文献
19.
Host functions involved in synthesis of parental replicative form of bacteriophage G4 were investigated using various replication mutants of Escheria coli. In dna+ bacteria, conversion of single-stranded viral DNA to replicative form DNA was insensitive to 200 microng/ml of rifampicin or 25 microng/ml of chloramphenicol. At high temperature, synthesis of parental replicative form was unaffected in mutants thermosensitive for dnaA, dnaB, dnaC(D), dnaE or dnaH. In dnaG or dnaZ mutants, however, parental replicative from DNA synthesis was clearly thermosensitive at 43 degrees C. Although the host rep product was essential for viral multiplication, the conversion of single stranded to replicative form was independent of the rep function. 相似文献
20.
Salmonella bacteriophage P22 grows in two deoxyribonucleic acid initiation mutants of Escherichia coli under nonpermissive conditions, dnaA and dnaC. Functional products of genes dnaE, dnaZ, lig, dnaK, and dnaG are indispensable for deoxyribonucleic acid replication of P22. In 11 E. coli dnaB mutants belonging to all phenotypic groups, phage were produced at 42 degrees C. 相似文献