首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed longitudinal twin data by using a multivariate normal model to identify and quantify genetic effects over time on two main aspects of growth, height and skeletal maturity. The largest genetic contribution to the variance in both height and skeletal maturity coincided with the respective ages of peak growth velocity. The highest genetic covariance between these two traits coincided with the age of greatest acceleration of growth in height. These findings imply the existence of regulatory or structural genes that influence growth in both height and skeletal maturity. We also found sex differences in the rapport between velocities for height and skeletal maturity. These are consistent with a predominant role of estrogen in accelerating skeletal maturation in females, and the existence of additional mechanisms in males which may promote growth in height independently of the effects of gonadal sex steroids.  相似文献   

2.
Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle tissue of post- and premenopausal women had similar concentrations of dehydroepiandrosterone and androstenedione, while the concentrations of estradiol and testosterone were significantly higher in muscle of the postmenopausal women. The presence of steroidogenetic enzymes in muscle tissue indicates that the elevated postmenopausal steroid levels in skeletal muscle are because of local steroidogenesis. The circulating sex steroids were associated with better muscle quality while the muscle concentrations reflected the amount of infiltrated fat within muscle tissue. We conclude that systemically delivered and peripherally produced sex steroids have distinct roles in the regulation of neuromuscular characteristics during aging.  相似文献   

3.
We have demonstrated previously that 17β-estradiol (E2) stimulates proliferation of skeletal tissues, both in vivo and in vitro, as measured by increased DNA synthesis and creatine kinase (CK) specific activity. The effect of E2 on bone is sex specific. E2 is active only in females and androgens only in males. By contrast, in cartilage of both sexes, dihydrotestosterone (DHT) as well as E2 stimulates CK specific activity and DNA synthesis. In bone, we find that sex steroids stimulate skeletal cell proliferation in gonadectomized as well as in immature rats. Ovariectomized (OVX) rats, between 1 and 4 weeks after surgery, show stimulation of CK by E2. The basal activity and response of CK changes with the varying endogenous levels of E2 in cycling rats, in which the highest basal activity is at proestrus and estrus and the highest response is in diestrus. In rats of all ages tested, both the basal and stimulated specific activity of CK is higher in diaphysis and epiphysis than in the uterus, or in the adipose tissue adjacent to the uterus, which has a response similar to that of the uterus itself. The effect of E2 in vivo, and in chrondroblasts and osteoblasts in vitro, is inhibited by high levels of the antiestrogen tamoxifen which, by itself, in similar high concentrations, shows stimulatory effects. In addition to the sex steroids, skeletal cells are also stimulated by secosteroid and peptide calciotrophic hormones. The interactions of the sex steroids and the other calciotrophic hormones. These results provide the first steps towards understanding the regulation of bone cell proliferation and growth by the concerted action of a variety of hormones and growth factors.  相似文献   

4.
The level of thousands of genes expression in the liver is differentiated on the basis of sexual dimorphism that affects the frequency of appearance of different pathological forms. The main hormonal factors of the liver’s sex differentiation are sex steroids and growth hormone. The impulsive and close to continuous secretion character of growth hormone in male and female individuals may have effects on masculinization or feminization processes, accordingly. The mechanism of decoding the growth hormone’s secretion pattern by liver cells is not known. Some genes in the liver with the expression of sex differentiated genes, have so called memory of gender, which is created, probably, during early postnatal ontogenesis with involvement of both androgens and growth hormone. The physical transporter of this memory is not known. The possible molecular mechanisms of various effects based on sex differentiation in liver have been described in this survey, including unique cases of determining the role of the growth hormone’s pattern and permissive function of the growth hormone concerning the direct effect of sex steroids to hepatocytes.  相似文献   

5.
Although reports on sex steroids have implicated them as promoting protein synthesis and also providing extra strength to the skeletal muscle, it remains unclear whether sex steroids affect glycogen metabolism to provide energy for skeletal muscle functions, since glycogen metabolism is one of the pathways that provides energy for the skeletal muscle contraction and relaxation cycle. The purpose of the current study was to show that testosterone and estradiol act differentially on skeletal muscles from different regions, differentially with reference to glycogen metabolism. To study this hypothesis, healthy mature male Wistar rats (90-120 days of age, weighing about 180-200 g) were castrated (a bilateral orchidectomy was performed to test the significance of skeletal muscle glycogen metabolism in the absence of testosterone). One group of castrated rats was supplemented with testosterone (100 microg/100 g body weight, i.m., for 30 days from day 31 postcastration onwards). To test whether estradiol has any effect on male skeletal muscle glycogen metabolism 17beta-estradiol (5 microg/100 g body weight, i.m., for 30 days from day 31 postcastration onwards) was administered to orchidectomized rats. To test whether these sex steroids have any differential effect on skeletal muscles from different regions, skeletal muscles from the temporal region (temporalis), muscle of mastication (masseter), forearm muscle (triceps and biceps), thigh muscle (vastus lateralis and gracilis), and calf muscle (gastrocnemius and soleus) were considered. Castration enhanced blood glucose levels and decreased glycogen stores in skeletal muscle from head, jaw, forearm, thigh, and leg regions. This was accompanied by diminished activity of glycogen synthetase and enhanced activity of muscle phosphorylase. Following testosterone supplementation to castrated rats, a normal pattern of all these parameters was maintained. Estradiol administration to castrated rats did not bring about any significant alteration in any of the parameters. The data obtained suggest a stimulatory effect of testosterone on skeletal muscle glycogenesis and an inhibitory effect on glycogenolysis. Estradiol did not play any significant role in the skeletal muscle glycogen metabolism of male rats.  相似文献   

6.
Gender dimorphisms exist in the pathogenesis of a variety of cardiovascular, cardiopulmonary, neurodegenerative, and endocrine disorders. Estrogens exert immense influence on myocardial remodeling following ischemic insult, partially through paracrine growth hormone production by bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells. Estrogens also facilitate the mobilization of endothelial progenitor cells to the ischemic myocardium and enhance neovascularization at the ischemic border zone. Moreover, estrogens limit pathological myocardial remodeling through the inhibitory effects on the proliferation of the cardiac fibroblasts. Androgens also may stimulate endothelial progenitor cell migration from the bone marrow, yet the larger role of androgens in disease pathogenesis is not well characterized. The beneficial effects of sex steroids include alteration of lipid metabolism in preadipocytes, modulation of bone metabolism and skeletal maturation, and prevention of osteoporosis through their effects on osteogenic precursors. In an example of sex steroid-specific effects, neural stem cells exhibit enhanced proliferation in response to estrogens, whereas androgens mediate inhibitory effects on their proliferation. Although stem cells can offer significant therapeutic benefits in various cardiovascular, neurodegenerative, endocrine disorders, and disorders of bone metabolism, a greater understanding of sex hormones on diverse stem cell populations is required to improve their ultimate clinical efficacy. In this review, we focus on the effects of estrogen and testosterone on various stem and progenitor cell types, and their relevant intracellular mechanisms.  相似文献   

7.
Early exposure to sex steroids is thought to be important in mediating the differentiation of male-typical sexual orientation. Bone morphology is a marker of childhood sex steroid exposure, because estrogens and androgens control sexual dimorphism in skeletal size. Anthropometric analysis of heterosexuals and homosexuals indicates that those bones, which become sexually dimorphic in childhood, but not those which become sexually dimorphic after puberty, are different in length in homosexuals and heterosexuals. Persons with a sexual preference for males have less long bone growth in the arms, legs and hands, than those with sexual preference for females. The data support the hypothesis that male homosexuals have had less steroid exposure during development than male heterosexuals and that female homosexuals have had greater steroid exposure during development than their heterosexual counterparts.  相似文献   

8.
Sex steroids are reported to influence thyroid pathogenesis in human and experimental animals. However, there is no report on this phenomenon during the early developmental period. The mitotic activity of thyrocytes in rats reaches its peak by day 10 postpartum. Thyrocytes actively proliferate in immature rats during the first three postnatal weeks, during which the pre-pubertal rise in serum titers of testosterone and estradiol has been recorded. The aim of the present study was to analyze whether there is a physiological relevance between thyroid growth and sex steroids during the postnatal period. Serum and thyroid tissue hormones (TSH, testosterone, and estradiol) were assayed by liquid phase RIA, and receptors for these hormones were also quantified. The peak rate of thyrocyte proliferation was observed during the second postnatal week in rats. Since the concentrations of sex steroids and their receptors also reached a peak around this period, it is suggested that elevated sex steroids and their receptors in the thyroid might enhance thyrocyte proliferation. A positive correlation between thyroid growth indices and sex steroids and their receptors further strengthens this suggestion. This is a preliminary study, and further experimental study may strengthen this proposal. This is the first report to show the availability of sex steroids and their receptors in the thyroid glands of immature rats under normal conditions.  相似文献   

9.
We used radioimmunoassay (RIA) to measure monthly serum levels of unconjugated and conjugated sex steroids (testosterone T, androstenedione A, estradiol E(2), and estrone E(1)) in 4 male and 4 female foals during their first year of life. Maximal production of sex steroids was detected from April to August with hormonal peaks, corresponding to the natural breeding season in adults. In males, only A levels were more steady. Total estrogens (unconjugated plus conjugated E(2) and E(1)) were the major steroids in immature males in contrast to adults. Estrogens generally peaked in young females before males; the major estrogen was E(1), and total estrogens overtook total androgens (unconjugated and conjugated T and unconjugated A). We also sampled 3 male and 3 female foals with bone alterations in adulthood. For all animals, serum levels of four bone formation markers were obtained: osteocalcin (O), hydroxyproline (HP), and alkaline phosphatase (AP), and a radiographic score was determined. Only male foals with normal skeletal frame (good radiographic score GRS) in adulthood showed a correlation (P < 0.01) between the distribution frequency of each bone formation marker and unconjugated E(2) or E(1) levels; this finding highlighted the role of unconjugated estrogens in bone maturation in horses, since this was not found in the groups with bone alterations. In females, the threshold of estrogen synthesis and sensitivity was probably sufficient to be a nonlimiting factor at this stage of development. Our results strongly suggest a differential regulation of the estrogen/androgen balance in horses according to sex, sexual maturation, and photoperiod. Moreover, estrogens appear to be crucial for skeletal development in male colts, and these steroids are good modulators of skeletal frame characteristics in adulthood.  相似文献   

10.
Recent reports reveal increasing complexity of mechanisms underlying the bone sparing effects of sex steroids. This review focuses on mechanisms by which sex steroids attenuate endocortical and trabecular adult bone turnover, perhaps their most important property as bone mass regulators. Clearly, estrogen withdrawal increases osteoclast number and bone resorption; however, important open questions are the extent to which osteoblasts and their precursors are involved, and the relative contributions of the RANK/RANKL/OPG system, Fas ligand and Runx2. In addition to reviewing these aspects of estrogen action, we also discuss proskeletal effects of androgens on the adult male skeleton, including aromatization to estrogens and male‐specific mechanisms. Detailed understanding of skeletal site‐ and gender‐dependent mechanisms by which sex steroids protect the adult skeleton will provide the foundation for improved risk assessment, prevention and management of osteoporosis. J. Cell. Physiol. 224: 305–310, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Estrogens and the skeleton: cellular and molecular mechanisms   总被引:1,自引:0,他引:1  
Postmenopausal women lose bone mineral density and this loss can be prevented by estrogen administration. Although the skeletal effects of estrogens have been regarded previously as indirect, estrogen receptors have been discovered in cultured human osteoblasts and related cell lines. The UMR106 cell line derived from a rat osteogenic osteosarcoma is such an osteoblast model. We have shown direct effects of estradiol (E) on these cells in vitro, inhibiting growth and stimulating alkaline phosphatase activity (AP) corrected for cell number. This response was maximal at E conc. of 10(-10) M in serum and Phenol Red free medium, was metabolite specific and cell cycle-dependent. These cells contain high affinity binding sites with a Kd of 0.5 nM. Estrogen receptors were detected by the monoclonal antibody H-222 on Western blot after initial immunoprecipitation to concentrate the proteins. E treatment increased several enzymes including creatine kinase and LDH isoenzymes along with increments in intracellular transferrin. Transforming growth factor-beta is secreted by these cells. Secretion of this peptide was stimulated by E. TGF-beta mediated the transient growth inhibition associated with E treatment. Insulin like growth factors (IGF) are also secreted by these cells with IGF-II concentrations in the culture medium being eight times higher than IGF-I levels. E treatment increased the concentrations of both IGFs in the culture medium after a 3 day incubation. Exposure of E treated cells manifested a mitogenic response and reduced AP, indicating that E induced receptors for IGFs. These findings establish direct effects of E on osteoblastic cells in vitro and demonstrate responses to E at many levels. These osteoblast responses in vitro suggest an important role for sex steroids in the development and function of the osteoblast lineage.  相似文献   

12.
The female reproductive system plays a major role in regulating the acquisition and loss of bone by the skeleton from menarche through senescence. Onset of gonadal sex steroid secretion at puberty is the major factor responsible for skeletal longitudinal and radial growth, as well as significant gain in bone density, until peak bone density is achieved in third decade of life. Gonadal sex steroids then help maintain peak bone density until menopause, including during the transient changes in skeletal mineral content associated with pregnancy and lactation. At menopause, decreased gonadal sex steroid production normally leads to rapid bone loss. The most rapid bone loss associated with decreased estrogen levels occurs in the first 8-10 years after menopause, with slower age-related bone loss occurring during later life. Age-related bone loss in women after the early menopausal phase of bone loss is caused by ongoing gonadal sex steroid deficiency, vitamin D deficiency, and secondary hyperparathyroidism. Other factors also contribute to age-related bone loss, including intrinsic defects in osteoblast function, impairment of the GH/IGF axis, reduced peak bone mass, age-associated sarcopenia, and various sporadic secondary causes. Further understanding of the relative contributions of the female reproductive system and each of the other factors to development and maintenance of the female skeleton, bone loss, and fracture risk will lead to improved approaches for prevention and treatment of osteoporosis.  相似文献   

13.
The adult skeletal muscle stem cells, satellite cells, are responsible for skeletal muscle growth and regeneration. Satellite cells represent a heterogeneous cell population that differentially express cell surface markers. The membrane-associated heparan sulfate proteoglycans, syndecan-4, and glypican-1, are differentially expressed by satellite cells during the proliferation and differentiation stages of satellite cells. However, how the population of syndecan-4- or glypican-1-positive satellite cells changes during proliferation and differentiation, and how sex and muscle growth potential affect the expression of these genes is unknown. Differences in the amount of satellite cells positive for syndecan-4 or glypican-1 would affect the process of proliferation and differentiation which would impact both muscle mass accretion and the regeneration of muscle. In the current study, the percentage of satellite cells positive for syndecan-4 or glypican-1 from male and female turkeys from a Randombred Control Line 2 and a line (F) selected for increased 16-week body weight were measured during proliferation and differentiation. Growth selection altered the population of syndecan-4- and glypican-1-positive satellite cells and there were sex differences in the percentage of syndecan-4- and glypican-1-positive satellite cells. This study provides new information on dynamic changes in syndecan-4- and glypican-1-positive satellite cells showing that they are differentially expressed during myogenesis and growth selection and sex affects their expression.  相似文献   

14.
The mammary gland is subjected to major morphological and biochemical changes during the lactation cycle. It is therefore not surprising that this dynamic process is strictly controlled. The importance of the sex steroid hormones 17beta-estradiol and progesterone for normal development of the mammary gland was recognized several decades ago and has been unequivocally confirmed since. Furthermore, it is now also established that the influence of sex steroids is not restricted to mammogenesis, but that these hormones also control involution. Another important regulatory role is played by growth factors that have been shown to modulate survival (epidermal growth factor, amphiregulin, transforming growth factor alpha, insulin like growth factor, and tumor necrosis factor alpha) or apoptosis (tumor necrosis factor alpha, transforming growth factor beta) of mammary cells. However, the molecular mechanism underlying the influence of sex steroid hormones and/or growth factors on the development and function of the mammary gland remains largely unknown to date. Also scarce is information on the interaction between both groups of modulators. Nevertheless, based on the current indications compiled in this review, an important functional role for sex steroid hormones in the lactation cycle in co-operation with growth factors can be suggested.  相似文献   

15.
Banu SK  Govindarajulu P  Aruldhas MM 《Steroids》2002,67(13-14):1007-1014
Thyroid gland is one of the non-classical target organs for sex steroids. Presence of androgen and estrogen receptors in the neoplastic and non-neoplastic thyroid glands of mammalian species is well documented. The aim of the present study is to elucidate the changes in serum and thyroidal sex steroids, and their receptors in the thyroid gland of rats from immature to adult age under gonadectomized (GDX) and sex steroids replaced conditions. Normal Wistar male and female rats from immature to adult age (day 21, 30, 45, 60 and 160 post-partum (pp)) were used in the present study. One group (I) of rats was GDX at an early age (day 10 pp) and the other group (II) at the adult age (day 120 pp). Group I rats were sacrificed at different experimental periods such as 21, 30, 45 and 60 days pp, and group II rats were sacrificed at day 160 pp. Another group of GDX rats from group I and II were replaced with physiological doses of testosterone or estradiol. Serum and thyroidal concentrations of sex steroids were estimated by RIA method and the concentrations of receptors by radioreceptor assay. Gonadectomy significantly decreased serum and thyroidal testosterone and estradiol and concentrations of androgen receptor (AR) and estrogen receptor (ER) in the thyroid. Replacement of sex steroids to GDX rats restored the normal level of sex steroids, AR and ER. Therefore, it is suggested from the present study that (i). sex steroids up-regulate their own receptors in the thyroid, (ii). sex steroids may influence thyroid growth and the proliferation of thyrocytes by modulating their receptor concentrations in the thyroid.  相似文献   

16.
The effect of sex steroids, 17 beta-estradiol and testosterone, on the production of 6-keto-prostaglandin F1 alpha, prostaglandin F2 alpha and prostaglandin E2 was studied in cultures of piglet aorta endothelial cells. In cells isolated from female animals both steroids stimulated the secretion of prostaglandins. In contrast, sex steroids did not affect prostaglandin synthesis by endothelial cells taken from male animals. In addition, female endothelial cells convert testosterone into estriol, estrone and estradiol. Estradiol-induced stimulation of prostacyclin production may explain in part the beneficial role generally attributed to naturally occurring estrogens in cardiovascular diseases.  相似文献   

17.
Brook CG 《Hormone research》1999,51(Z3):52-54
The hypothalamo-pituitary-gonadal axis in children is fully functional in fetal life and immediately after birth. The reason why it declines with advancing years of childhood is not clear but gonadotropin pulsatility is at a nadir at 6 years of age. From that time pulsatile gonadotropin starts to reappear but, again, the reason why this happens is completely unknown. All of the events of puberty can be ascribed to pulsatile gonadotropin-releasing hormone stimulation causing pulsatile gonadotropin stimulation of sex steroids. The sex steroids explain the development of the pubertal characteristics; the fact that girls have an earlier growth spurt than boys is explained by the differential effect of oestradiol and testosterone on hypothalamic control of pituitary growth hormone secretion.  相似文献   

18.
Dehydroepiandrosterone (DHEA), a 19-carbon precursor of sex steroids, is abundantly produced in the human but not the mouse adrenal. However, mice produce DHEA and DHEA-sulfate (DHEAS) in the fetal brain. DHEA stimulates axonal growth from specific populations of mouse neocortical neurons in vitro, while DHEAS stimulates dendritic growth from those cells. The synthesis of DHEA and sex steroids, but not mouse glucocorticoids and mineralocorticoids, requires P450c17, which catalyzes both 17 alpha-hydroxylase and 17,20-lyase activities. We hypothesized that P450c17-knockout mice would have disordered sex steroid synthesis and disordered brain DHEA production and thus provide phenotypic clues about the functions of DHEA in mouse brain development. We deleted the mouse P450c17 gene in 127/SvJ mice and obtained several lines of mice from two lines of targeted embryonic stem cells. Heterozygotes were phenotypically and reproductively normal, but in all mouse lines, P450c17(-/-) zygotes died by embryonic day 7, prior to gastrulation. The cause of this early lethality is unknown, as there is no known function of fetal steroids at embryonic day 7. Immunocytochemistry identified P450c17 in embryonic endoderm in E7 wild-type and heterozygous embryos, but its function in these cells is unknown. Enzyme assays of wild-type embryos showed a rapid rise in 17-hydroxylase activity between E6 and E7 and the presence of C(17,20)-lyase activity at E7. Treatment of pregnant females with subcutaneous pellets releasing DHEA or 17-OH pregnenolone at a constant rate failed to rescue P450c17(-/-) fetuses. Treatment of normal pregnant females with pellets releasing pregnenolone or progesterone did not cause fetal demise. These data suggest that steroid products of P450c17 have heretofore-unknown essential functions in early embryonic mouse development.  相似文献   

19.
20.
Space travel directly induces skeletal muscle atrophy.   总被引:4,自引:0,他引:4  
Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号