首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The ability of phosphocellulose paper to retain phosphorylated peptides containing basic amino acid residues was investigated. Some peptide substrates that are commonly used for three different protein kinases were tested. The adsorption onto phosphocellulose paper was strongly dependent on the amino acid composition of the peptides. None of the phosphopeptides studied was adsorbed completely, the amount bound varied from 7 to 93%. Phosphopeptides containing two basic amino acids each differed remarkably in the degree of binding to the phosphocellulose paper (40% RRASVA, 60% FRRLSI, and 80% HRASV was bound). The results presented here indicate that data from phosphorylation experiments obtained so far for different peptides using the phosphocellulose paper method should be judged with caution.  相似文献   

2.
Isolation of phosphorylated peptides and proteins on ion exchange papers.   总被引:17,自引:0,他引:17  
A simple technique for the isolation of 32P-labeled peptides has been adapted from the ion exchange method of Witt and Roskoski (Anal. Biochem.66, 253, 1975). Protein kinase reaction mixtures are acidified and pipetted onto phosphocellulose papers. A variety of peptide and protein substrates are shown to bind to the ion exchange papers under conditions in which contaminating [γ-32P]ATP is removed by washing in acetic acid. The capacity of phosphocellulose papers for the phosphopeptide, Leu-Arg-Arg-Ala-Ser(P)-Leu-Gly, exceeds 375 nmol per paper (2 × 2 cm). The method is limited to relatively basic peptides but is applicable to most proteins. Large numbers of samples can be processed simultaneously with no compromise in sensitivity or reliability of results.  相似文献   

3.
A simple and highly sensitive method for the assay of trypsin has been developed by making use of the phosphorylated synthetic peptide Leu-Arg-Arg-Ala-Ser-(32P)-Leu-Gly as substrate. The technique has been adapted from the phosphocellulose method of R. Roskoski, Jr. (in Methods in Enzymology (Corbin, J., and Hardman, J., Eds.), Vol. 99, pp. 3-6, Academic Press, New York) used for measuring of protein kinases. In addition to measuring the activity of trypsin at the microgram level, the 32P-labeled peptide method can be used for measuring other trypsin-like enzymes. It has been successfully utilized for the identification of a new peptidase from the fungus Saccobolus platensis.  相似文献   

4.
We describe the development of a novel method for the assay of serine/threonine protein kinases based on fluorescence lifetime. The assay consists of three generic peptides (which have been used by others in the assay of >140 protein kinases in various assay formats) labeled with a long lifetime fluorescent dye (14 or 17 ns) that act as substrates for protein kinases and an iron(III) chelate that modulates the fluorescence lifetime of the peptide only when it is phosphorylated. The decrease in average fluorescence lifetime as measured in a recently developed fluorescence lifetime plate reader (Edinburgh Instruments) is a measure of the degree of phosphorylation of the peptide. We present data showing that the assay performs as well as, and in some cases better than, the “gold standard” radiometric kinase assays with respect to Z′ values, demonstrating its utility in high-throughput screening applications. We also show that the assay gives nearly identical results in trial screening to those obtained by radiometric assays and that it is less prone to interference than simple fluorescence intensity measurements.  相似文献   

5.
Synthetic peptides are important tools with which to study the activities of protein kinases and phosphatases toward specific substrate sequences which are present within selected regions of a protein. Most existing assays for the phosphorylation or dephosphorylation of such peptides utilize 32P and either affinity chromatography or HPLC separation and require extensive characterization and validation. Here, we describe a method for monitoring the phosphorylation or dephosphorylation of almost any peptide of interest which does not require the use of radioactivity, making its reagents stable for a prolonged period, and which can be performed in any standard laboratory. For this, after performance of kinase or phosphatase reactions with the peptide of interest, products are derivatized with fluorescamine and are separated according to charge by agarose gel electrophoresis. Phosphorylated and nonphosphorylated peptides are readily separated and can be both identified and quantified by uv detection. The lower limit for detection of peptide in the agarose gel was 0.02 nmol using the gel-shift kinase assay with cAMP-dependent kinase and Kemptide as substrate. This had sensitivity and reproducibility similar to those of a standard assay using [γ-32P]ATP with this substrate. Dephosphorylation of a synthetic phosphopeptide corresponding to a segment of the cholecystokinin receptor was tested in an analogous assay with known amounts of protein phosphatase 2A. Phosphopeptide and dephosphopeptide were easily detected and quantified with as little as 0.03 mU/mI protein phosphatase 2A activity. Therefore, with this assay, most synthetic peptides and phosphopeptides can be used as substrates without further modification. This will be of particular interest for monitoring the purification of highly specific protein kinase and phosphatase activities.  相似文献   

6.
N-myristoyl-CoA:protein N-myristoyl transferase is the enzyme that catalyzes the covalent transfer of myristic acid to the NH2-terminal glycine residue of a protein, or peptide, substrate. We have established a new, rapid, reliable, and inexpensive myristoyl-CoA:protein N-myristoyl transferase assay. This N-myristoyl transferase assay is based on the binding of the [3H]myristoylated peptide to a P81 phosphocellulose paper matrix and is more convenient for assaying multiple samples than existing procedures. Two peptides, derived from the N-terminal sequences of the type II catalytic subunit of cAMP-dependent protein kinase and pp60src, were used as substrates. A survey of rat and bovine tissue extracts demonstrated that in both cases brain contained the highest NMT activity (i.e., brain greater than spleen greater than heart greater than liver). Under the assay conditions used, the rate of myristoylation was linear for 10 min and with up to 4.0 mg/ml of brain extract.  相似文献   

7.
C Volonté  R A Nichols  L A Greene 《BioTechniques》1992,12(6):854-8, 860-3
A slot-filtration method has been developed for the detection and quantitation of protein kinase and phosphatase activities. In this technique, after kinase-dependent phosphorylation or phosphatase-dependent dephosphorylation of different substrates, samples are transferred under vacuum onto nitrocellulose using a slot-blotting apparatus. Non-incorporated or released radioactivity is then removed by filtration and washing under vacuum. Quantitation is performed by scintillation or Cerenkov counting of the excised membrane slots. Application of the method to the assay of four different protein kinases (protein kinase N, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinases type I and type III) and one phosphatase is presented. A number of protein substrates with varying molecular masses and isoelectric points were found suitable for the slot-filtration technique. The method is applicable to impure as well as purified kinase and phosphatase preparations, can be used over a wide range of concentrations of substrates, has a very low background of nonspecific ATP binding and provides highly reproducible data. The slot-filtration method can also be adapted for use with ion-exchange paper, particularly for assays using peptides as substrates. The technique, with either nitrocellulose or ion-exchange paper, can be used to rapidly process large numbers of samples and can be simultaneously applied to direct comparison of different kinases, phosphatases and/or substrates in the same experiment.  相似文献   

8.
The B variant of beta-casein was phosphorylated with [gamma-32P]ATP using four different protein kinases isolated from rabbit reticulocytes. Casein was maximally phosphorylated by the individual protein kinase activities and subjected to chymotrptic digestion. The peptides were separated by a two-dimensional peptide fingerprinting technique, and the phosphorylated peptides were identified by autoradiography, The two phosphorylated peptides obtained from the action of casein kinase I were shown to have different migration patterns from those obtained with casein kinase II. The cAMP-regulated protein kinases had the same substrate specificity with beta-casein B, and the two phosphorylated peptides obtained using these enzymes were distinct from those phosphorylated by the cAMP-independent enzymes. Thus, the different protein kinases can be identified by substrate specificity using beta-casein.  相似文献   

9.
Three cyclic AMP-independent acetyl-CoA carboxylase kinases (A, B1 and B2) have been isolated from lactating rat mammary gland, using phosphocellulose chromatography, high performance gel filtration, and affinity chromatography on casein-Sepharose and phosvitin-Sepharose. These protein kinases have been identified with previously described kinases by the following criteria. Kinase A phosphorylates the same sites on rabbit mammary acetyl-CoA carboxylase as acetyl-CoA carboxylase kinase 2, which was originally described as a contaminant of rabbit mammary acetyl-CoA carboxylase purified by the poly(ethylene glycol)procedure. Kinase A will henceforth be referred to as acetyl-CoA carboxylase kinase-2. Kinase B1 has been identified with casein kinase II by its heparin sensitivity, elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. Kinase B2 has been identified with casein kinase I by its elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. The three kinases phosphorylate distinct sites on acetyl-CoA carboxylase. Phosphorylation by either casein kinase I or II does not affect enzyme activity. However, acetyl-CoA carboxylase kinase 2 inactivates acetyl-CoA carboxylase reversibly, in an identical manner to cyclic-AMP-dependent protein kinase, and phosphorylates sites located on identical peptides. Acetyl-CoA carboxylase kinase-2 can, however, be distinguished from the free catalytic subunit of cyclic-AMP-dependent protein kinase by its molecular mass, its substrate specificity, its elution behaviour on phosphocellulose, and its complete lack of sensitivity to the protein inhibitor of cyclic-AMP-dependent protein kinase. We also present evidence that phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase occurs directly and not via a bicyclic cascade system as proposed by other laboratories.  相似文献   

10.
To perform phosphoproteomics and signal transduction studies, a number of protein kinase activities and levels must be simultaneously analyzed in different cell samples and correlated with phosphoprotein patterns to obtain conclusions with regard to the regulation of kinase networks. We describe here a miniaturized format of the classical phosphocellulose (P81) paper binding assay with which up to 594 kinase reactions can be simultaneously analyzed. Kinase peptide substrates possessing a minimum of three consecutive basic residues were subjected to phosphorylation in 96-well plates and aliquots of the phosphorylation reactions were spotted on arrays printed on P81 papers. Phosphorylation levels were quantified using a storage phosphor system imager. The versatility of the procedure was validated by analyzing casein kinase 2, protein kinase C, and p34cdc2/cyclin B in cell extracts and testing the effect of known inhibitors and activators on kinase activities. This improved, miniaturized version of the classical P81 paper method combines simplicity, high sensitivity, high reproducibility, high reliability, and optimal Z factors and takes into account possible sources of background signals. We discuss the possibility of automation and the advantages over other methods.  相似文献   

11.
Synthetic beta-turn peptides as substrates for a tyrosine protein kinase   总被引:2,自引:0,他引:2  
An attempt has been made at defining the secondary structural requirement for phosphorylation of substrates of a protein tyrosine kinase from the leukemia virus-transformed LSTRA cell line. An examination of the sites of phosphorylation of substrates of protein tyrosine kinases indicated a relatively high probability of the beta-turn as the secondary structural feature at these sites. We have, therefore, synthesized three tyrosine peptides: Ala-Pro-Tyr-Gly-NHCH3, Leu-Pro-Tyr-Ala-NHCH3, and Pro-Gly-Ala-Tyr-NH2, of which the first two peptides, but not the third, would be expected to contain the tyrosine residue in a beta-turn. Circular dichroism and infrared spectral data on the peptides confirmed this expectation. Phosphorylation data on the peptides by the tyrosine kinase showed that the two beta-turn peptides were phosphorylated with Vmax and Km values comparable to those of the 13-residue-long arginine-containing synthetic peptide substrate having a sequence homologous to the autophosphorylation site of the LSTRA kinase. The peptides used here contain the shortest sequence length among the reported synthetic peptide substrates for protein tyrosine kinases. Their preference for the beta-turn indicated that this conformation may serve as the recognition site for tyrosine phosphorylation.  相似文献   

12.
A microarray-based mix-and-measure, nonradioactive multiplex method with real-time detection was used for substrate identification, assay development, assay optimisation, and kinetic characterization of protein kinase A (PKA). The peptide arrays included either up to 140 serine/threonine-containing peptides or a concentration series of a smaller number of peptides. In comparison with existing singleplex assays, data quality was high, variation in assay conditions and reagent consumption were reduced considerably, and assay development could be accelerated because phosphorylation kinetics were monitored simultaneously on 4, 12, or 96 arrays. PKA was shown to phosphorylate many peptides containing known PKA phosphorylation sites as well as some new substrates. The kinetic behavior of the enzyme and the mechanism of inhibition by AMP-PNP, staurosporin, and PKA inhibitor peptide on the peptide microarray correlated well with data from homogeneous assays. Using this multiplex setup, we showed that the kinetic parameters of PKA and the potency of PKA inhibitors can be affected by the sequence of the peptide substrate. The technology enables kinetic monitoring of kinase activity in a multiplex setting such as a cell or tissue lysate. Finally, this high-throughput method allows fast identification of peptide substrates for serine/threonine kinases that are still uncharacterized.  相似文献   

13.
We report the development of a microtiter plate assay for protein kinase C. Reaction components and enzyme samples (protein kinase C purified by phosphatidylserine/cholesterol affinity or DEAE-Sephacel ion-exchange chromatography) were added to wells of a 96-well microtiter plate. The assay was started by the addition of [gamma-32P]ATP with a repeating pipet. After a 3-min incubation at 30 degrees C the wells were sampled six at a time with a 12-channel pipet and spotted onto phosphocellulose filter paper rectangles which were washed with tap water and acetone and counted for radioactivity. The microtiter plate method was more rapid than but gave results similar to those of a standard assay performed in plastic test tubes individually incubated in a 30 degrees C water bath. The microtiter plate procedure gave an intraassay (within one plate) variation of less than 9% and an interassay (between plates) variation of less than 5%. It was linear with time of incubation for 20 min and with amount of enzyme. This method can be used to expedite the assaying of column chromatography fractions for protein kinase C (and other kinase) activity.  相似文献   

14.
The introduction of peptides into living cells for the purpose of manipulating cellular biochemistry has become widespread throughout biology. However, little is known about the behavior of these short sequences of amino acids within cells, particularly those used as substrates or inhibitors for kinases and other enzymes. We utilized a quantitative, single-cell assay to demonstrate that an 11-amino acid peptide was efficiently phosphorylated by intracellular protein kinase B (PKB) in fibrosarcoma cell line HT1080 and in NIH-3T3 cells. The phosphorylated peptide was also readily dephosphorylated by intracellular phosphatases. Assays of the peptide's phosphorylation in single, living cells measured the balance of the activities of PKB and phosphatases in that cell. At a peptide concentration below the K(M) of PKB and the phosphatases, the ratio of phosphorylated to nonphosphorylated peptide at the steady state was independent of the peptide concentration. A single-cell assay utilizing this peptide revealed the existence of two subpopulations of cells whose unique activities had hitherto been obscured by population averaging. Additional studies of cells stimulated by PDGF demonstrated that a quantitative analysis of PKB activation in response to a physiological stimulus was possible. These studies demonstrated that short peptides can remain specific within the complex intracellular milieu and function as sensitive reporters of the activation state of native kinases within live cells.  相似文献   

15.
A soluble casein kinase isolated and purified to homogeneity from the human erythrocyte cytosol by phosphocellulose and Sephadex G-200 chromatographies is indistinguishable from the membrane-bound casein (spectrin) kinase according to physical and site-specificity criteria. The soluble enzyme shows an Mr of about 30000 by gel filtration and comigrates with the purified membrane spectrin kinase as a single polypeptide of 32000 Da on sodium dodecyl sulfate polyacrylamide gels. The soluble kinase phosphorylates spectrin in situ in spectrin kinase-depleted ghosts and catalyzes the in vitro phosphorylation of partially dephosphorylated spectrin with saturation kinetics identical to those displayed by the membrane spectrin kinase. When component 2 of spectrin that had been phosphorylated with [gamma-32P]ATP by either the soluble or the membrane kinases was subjected to limited proteolysis, the same 21500 Da papain-generated phosphopeptide was found to have been produced by the two enzymes. The same 21500 Da phosphopeptide was identified after papain digestion of spectrin isolated from intact cells that had been incubated with 32Pi. However, this particular peptide was not labeled in spectrin that had been phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. Identical phosphopeptide patterns were obtained by gel filtration and two-dimensional peptide maps of trypsin-cleaved component 2 of spectrin that had been labeled in situ, in intact ghosts or in spectrin kinase-depleted ghosts supplemented with the soluble kinase. These findings indicate a possible identity of the soluble with the membrane-bound casein (spectrin) kinase.  相似文献   

16.
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent.  相似文献   

17.
Using a partially purified HL-60 tyrosine protein kinase, we designed a new HPLC method for the measurement of tyrosylphosphorylation of angiotensin II. The present method uses reversed-phase chromatography and elution involving an acetonitrile gradient containing the counterion tetrabutylammonium phosphate. The peptide substrate, [gamma-32P]ATP, the cosubstrate, and 32P-labeled phosphorylated peptides were quantified online by measuring the Cerenkov effect. Injections, separation, and analysis were performed automatically. Furthermore, the method permits a direct visualization of peptide substrate phosphorylation and has a potentially universal application; i.e., it is usable with any kind of peptide in a given range of hydrophobicity. This assay was designed for specificity studies, which are of major importance at the molecular level, in order to understand active site topology and the biophysical requirements of tyrosine protein kinases. As examples, data on chromatography separations of angiotensin II analogs (five to ten amino acids in length) are presented, as well as for other peptide substrates such as RR-src, the pp60src autophosphorylation site-derived peptide, and minigastrin. We adapted our experimental conditions to accommodate crude extracts from HL-60 cells. Preliminary experiments clearly indicated that other biological sources can be used. Despite the existence of numerous methods published in the literature for the measurement of kinase activities, the method presented herein is the only one to the authors' knowledge that can be used in and has been assessed for specificity studies. Peptides do not require particular features such as charged residues (i.e., arginine) to be analyzed.  相似文献   

18.
A fluorescence polarization assay for native protein substrates of kinases   总被引:1,自引:0,他引:1  
Protein phosphorylation is the mediator of many important cellular processes of signal transduction and cell regulation. Phosphorylation often occurs on multiple sites within a single protein, whereby the results of individual phosphorylations are not well defined. This is partially due to the lack of tools for analyzing specific phosphorylation states in a quantitative manner. We have developed a high-throughput, rapid, and quantitative method for the determination of the phosphorylation status of peptides and, more importantly, native protein substrates of kinases using a competitive fluorescence-based approach. We have applied our method to measuring the phosphorylation activity of the Wee1 and Myt1 kinases. Our technique allows one to monitor the bis-phosphorylation status of the Cdk2 protein using an antibody specific for bis-phosphorylated Cdk2 and a fluorescently labeled bis-phosphorylated Cdk2 peptide. We have used this assay to screen a library of 16 general kinase inhibitors against Wee1 and Myt1 activity. None of the inhibitors inhibited Wee1, but both staurosporine and K-252a inhibited Myt1, with IC(50) values of 9.2+/-3.6 and 4.0+/-1.3 microM, respectively.  相似文献   

19.
Incubation of rat pheochromocytoma PC12 cells with dibutyryl cyclic AMP or 56 mM K+ is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase in situ. Following incubation of the PC12 cells with 32Pi, rapid isolation of the tyrosine hydroxylase, and tryptic digestion of the enzyme, two distinct 32P-peptides can be identified after paper electrophoresis. 56 mM K+ increases 32Pi incorporation into both of these peptides, whereas dibutyryl cyclic AMP increases 32Pi incorporation into only one of these peptides. The rate of increase in the incorporation of 32Pi into these two peptides in cells treated with 56 mM K+ is similar. The phosphorylation of tyrosine hydroxylase in PC12 cells occurs exclusively on serine residues. These results suggest that tyrosine hydroxylase in PC12 cells is phosphorylated on serine residues at two or more distinct sites after 56 mM K+ -induced depolarization. Since only one of these sites is phosphorylated by cyclic AMP-dependent protein kinase, activation of tyrosine hydroxylase by 56 mM K+ may involve phosphorylation by multiple protein kinases in rat pheochromocytoma PC12 cells.  相似文献   

20.
The appreciation of protein phosphorylation as a ubiquitous mechanism for the post-translational control of protein function has drawn our attention to the phosphorylation of plasma membrane proteins. We have studied this phenomenon in the human erythrocyte and rat adipocyte, and have observed several features, common to the two systems, which may be of general significance. In examining protein phosphorylation in intact cells incubated with 32Pi, it is evident that the 32P-polypeptides of the plasma membrane are among the most highly labelled species in the cell, despite their minor contribution to overall protein content. The addition of epinephrine (to adipocytes) or cAMP (to erythrocytes) increases the phosphorylation of certain peptides, whereas others are unaffected. The protein kinases mediating these phosphorylations are present in the plasma membrane as isolated, and can be divided into two groups--cAMP dependent and cAMP independent. These two classes of kinase differ markedly in their substrate specificity toward endogenous and exogenous polypeptide substrates. Two classes of protein kinases with similar properties can be detected in the cytoplasm. The relationship between the membrane-bound and cytoplasmic enzymes is uncertain. The potential roles of the plasma membrane cAMP dependent protein kinases are evident from the diverse effects of cAMP on surface properties; however, the prevalence of plasma membrane proteins phosphorylated via cAMP independent pathways is striking. Thus, elucidation of the regulatory properties of the plasma membrane cAMP independent protein kinases may give new insight into the control of a variety of surface phenomena not mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号