首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inspiratory intercostal muscles elevate the ribs and thereby elicit a fall in pleural pressure (DeltaPpl) when they contract. In the present study, we initially tested the hypothesis that this DeltaPpl does, in turn, oppose the rib elevation. The cranial rib displacement (Xr) produced by selective activation of the parasternal intercostal muscle in the fourth interspace was measured in dogs, first with the rib cage intact and then after DeltaPpl was eliminated by bilateral pneumothorax. For a given parasternal contraction, Xr was greater after pneumothorax; the increase in Xr per unit decrease in DeltaPpl was 0.98+/-0.11 mm/cmH2O. Because this relation was similar to that obtained during isolated diaphragmatic contraction, we subsequently tested the hypothesis that the increase in Xr observed during breathing after diaphragmatic paralysis was, in part, the result of the decrease in DeltaPpl, and the contribution of the difference in DeltaPpl to the difference in Xr was determined by using the relation between Xr and DeltaPpl during passive inflation. With diaphragmatic paralysis, Xr during inspiration increased approximately threefold, and 47+/-8% of this increase was accounted for by the decrease in DeltaPpl. These observations indicate that 1) DeltaPpl is a primary determinant of rib motion during intercostal muscle contraction and 2) the decrease in DeltaPpl and the increase in intercostal muscle activity contribute equally to the increase in inspiratory cranial displacement of the ribs after diaphragm paralysis.  相似文献   

2.
Inflation induces a marked decrease in the lung-expanding ability of the diaphragm, but its effect on the parasternal intercostal muscles is uncertain. To assess this effect, the phrenic nerves and the external intercostals were severed in anesthetized, vagotomized dogs, such that the parasternal intercostals were the only muscles active during inspiration, and the endotracheal tube was occluded at different lung volumes. Although the inspiratory electromyographic activity recorded from the muscles was constant, the change in airway opening pressure decreased with inflation from -7.2+/-0.6 cmH2O at functional residual capacity to -2.2+/-0.2 cmH2O at 20-cmH2O transrespiratory pressure (P<0.001). The inspiratory cranial displacement of the ribs remained virtually unchanged, and the inspiratory caudal displacement of the sternum decreased moderately. However, the inspiratory outward rib displacement decreased markedly and continuously; at 20 cmH2O, this displacement was only 23+/-2% of the value at functional residual capacity. Calculations based on this alteration yielded substantial decreases in the change in airway opening pressure. It is concluded that, in the dog, 1) inflation affects adversely the lung-expanding actions of both the parasternal intercostals and the diaphragm; and 2) the adverse effect of inflation on the parasternal intercostals is primarily related to the alteration in the kinematics of the ribs. As a corollary, it is likely that hyperinflation also has a negative impact on the parasternal intercostals in patients with chronic obstructive pulmonary disease.  相似文献   

3.
To assess the mechanical coupling between the parasternal and external intercostals in the cranial portion of the rib cage, we measured the respiratory changes in length and the electromyograms of the two muscles in the same third or fourth intercostal space in 24 spontaneously breathing dogs. We found that 1) the amount of inspiratory shortening of the external intercostal was considerably smaller than the amount of shortening of the parasternal; 2) after selective denervation of the parasternal, the inspiratory shortening of both the parasternal and the external intercostal was almost abolished; 3) on the other hand, after selective denervation of the external intercostal, the inspiratory shortening of the parasternal was unchanged, and the inspiratory shortening of the external intercostal was reduced but not suppressed; and 4) this persistent shortening of the external intercostal was reversed into a clear-cut inspiratory lengthening when the parasternal was subsequently denervated. We conclude that in the dog 1) the inspiratory contraction of the external intercostals in the cranial portion of the rib cage is agonistic in nature as is the contraction of the parasternals; 2) during resting breathing, however, the changes in length of these external intercostals are largely determined by the action of the parasternals. These observations are consistent with the idea that in the dog, the parasternals play a larger role than the external intercostals in elevating the ribs during resting inspiration.  相似文献   

4.
To assess the relative contributions of the different groups of inspiratory intercostal muscles to the cranial motion of the ribs in the dog, we have measured the axial displacement of the fourth rib and recorded the electromyograms of the parasternal intercostal, external intercostal, and levator costae in the third interspace in 15 anesthetized animals breathing at rest. In eight animals, the parasternal intercostals were denervated in interspaces 1-5. This procedure caused a marked increase in the amount of external intercostal and levator costae inspiratory activity, and yet the inspiratory cranial motion of the rib was reduced by 55%. On the other hand, the external intercostals in interspaces 1-5 were sectioned in seven animals, and the reduction in the cranial rib motion was only 22%; the amount of parasternal and levator costae activity, however, was unchanged. When the parasternals in these animals were subsequently denervated, the levator costae inspiratory activity increased markedly, but the inspiratory cranial motion of the rib was abolished or reversed into an inspiratory caudal motion. These studies thus confirm that, in the dog breathing at rest, the parasternal intercostals have a larger role than the external intercostals and levator costae in causing the cranial motion of the ribs during inspiration. A quantitative analysis suggests that the parasternal contribution is approximately 80%.  相似文献   

5.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The diaphragm acting alone causes a cranial displacement of the lower ribs and a caudal displacement of the upper ribs. The respiratory effect of the lower rib displacement, however, is uncertain. In the present study, two sets of experiments were performed in dogs to assess this effect. In the first, all the inspiratory intercostal muscles were severed, so that the diaphragm was the only muscle active during inspiration, and the normal inspiratory cranial displacement of the lower ribs was suppressed at regular intervals. In the second experiment, the animals were given a muscle relaxant to abolish respiratory muscle activity, and external, cranially oriented forces were applied to the lower rib pairs to simulate the action of the diaphragm on these ribs. The data showed that 1) holding the lower ribs stationary during spontaneous, isolated diaphragm contraction had no effect on the change in lung volume during unimpeded inspiration and no effect on the fall in pleural pressure (Ppl) during occluded breaths; 2) the procedure, however, caused an increase in the caudal displacement of the upper ribs; and 3) pulling the lower rib pairs cranially induced a cranial displacement of the upper ribs and a small fall in Ppl. These observations indicate that the force applied on the lower ribs by the diaphragm during spontaneous contraction, acting through the interdependence of the ribs, is transmitted to the upper ribs and has an inspiratory effect on the lung. However, this effect is very small compared to that of the descent of the dome.  相似文献   

7.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

8.
Cranial displacement of a hemidiaphragm during sniffs is a cardinal sign of unilateral diaphragmatic paralysis in clinical practice. However, we have recently observed that isolated stimulation of one phrenic nerve in dogs causes the contralateral (inactive) hemidiaphragm to move caudally. In the present study, therefore, we tested the idea that, in unilateral diaphragmatic paralysis, the pattern of inspiratory muscle contraction plays a major role in determining the motion of the inactive hemidiaphragm. We induced a hemidiaphragmatic paralysis in six anesthetized dogs and assessed the contour of the diaphragm during isolated unilateral phrenic nerve stimulation and during spontaneous inspiratory efforts. Whereas the inactive hemidiaphragm moved caudally in the first instance, it moved cranially in the second. The parasternal intercostal muscles were then severed to reduce the contribution of the rib cage muscles to inspiratory efforts and to enhance the force generated by the intact hemidiaphragm. Although the change in pleural pressure (DeltaPpl) was unaltered, the cranial displacement of the paralyzed hemidiaphragm was consistently reduced. A pneumothorax was finally induced to eliminate DeltaPpl during unilateral phrenic nerve stimulation, and this enhanced the caudal displacement of the inactive hemidiaphragm. These observations indicate that, in unilateral diaphragmatic paralysis, the motion of the inactive hemidiaphragm is largely determined by the balance between the force related to DeltaPpl and the force generated by the intact hemidiaphragm.  相似文献   

9.
Changes in intrathoracic pressure produced by the various inspiratory intercostals are essentially additive, but the interaction between these muscles and the diaphragm remains uncertain. In the present study, this interaction was assessed by measuring the changes in airway opening (DeltaPao) or transpulmonary pressure (DeltaPtp) in vagotomized, phrenicotomized dogs during spontaneous inspiration (isolated intercostal contraction), during isolated rectangular or ramp stimulation of the peripheral ends of the transected C(5) phrenic nerve roots (isolated diaphragm contraction), and during spontaneous inspiration with superimposed phrenic nerve stimulation (combined diaphragm-intercostal contraction). With the endotracheal tube occluded at functional residual capacity, DeltaPao during combined diaphragm-intercostal contraction was nearly equal to the sum of the DeltaPao produced by the two muscle groups contracting individually. However, when the endotracheal tube was kept open, DeltaPtp during combined contraction was 123% of the sum of the individual DeltaPtp (P < 0.001). The increase in lung volume during combined contraction was also 109% of the sum of the individual volume increases (P < 0.02). Abdominal pressure during combined contraction was invariably lower than during isolated diaphragm contraction. It is concluded, therefore, that the canine diaphragm and intercostal muscles act synergistically during lung expansion and that this synergism is primarily due to the fact that the intercostal muscles reduce shortening of the diaphragm. When the lung is maintained at functional residual capacity, however, the synergism is obscured because the greater stiffness of the rib cage during diaphragm contraction enhances the DeltaPao produced by the isolated diaphragm and reduces the DeltaPao produced by the intercostal muscles.  相似文献   

10.
To assess the respiratory function of the ribs, we measured the changes in airway opening pressure (Pao) induced by stimulation of the parasternal and external intercostal muscles in anesthetized dogs, first before and then after the bony ribs were removed from both sides of the chest. Stimulating either set of muscles with the rib cage intact elicited a fall in Pao in all animals. After removal of the ribs, however, the fall in Pao produced by the parasternal intercostals was reduced by 60% and the fall produced by the external intercostals was eliminated. The normal outward curvature of the rib cage was also abolished in this condition, and when the curvature was restored by a small inflation, external intercostal stimulation consistently elicited a rise rather than a fall in Pao. These findings thus confirm that the ribs play a critical role in the act of breathing by converting intercostal muscle shortening into lung volume expansion. In addition, they carry the compression that is required to balance the pressure difference across the chest wall.  相似文献   

11.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

12.
Previous studies have shown that in normal humans the change in airway opening pressure (DeltaPao) produced by all the parasternal and external intercostal muscles during a maximal contraction is approximately -18 cmH(2)O. This value is substantially less negative than DeltaPao values recorded during maximal static inspiratory efforts in subjects with complete diaphragmatic paralysis. In the present study, therefore, the respiratory effects of the two prominent inspiratory muscles of the neck, the sternomastoids and the scalenes, were evaluated by application of the Maxwell reciprocity theorem. Seven healthy subjects were placed in a computed tomographic scanner to determine the fractional changes in muscle length during inflation from functional residual capacity to total lung capacity and the masses of the muscles. Inflation induced greater shortening of the scalenes than the sternomastoids in every subject. The inspiratory mechanical advantage of the scalenes thus averaged (mean +/- SE) 3.4 +/- 0.4%/l, whereas that of the sternomastoids was 2.0 +/- 0.3%/l (P < 0.001). However, sternomastoid muscle mass was much larger than scalene muscle mass. As a result, DeltaPao generated by a maximal contraction of either muscle would be 3-4 cmH(2)O, which is about the same as DeltaPao generated by the parasternal intercostals in all interspaces.  相似文献   

13.
Conventional wisdom maintains that the diaphragm lifts the lower ribs during isolated contraction. Recent studies in dogs have shown, however, that supramaximal, tetanic stimulation of the phrenic nerves displaces the lower ribs caudally and inward. In the present study, the hypothesis was tested that the action of the canine diaphragm on these ribs depends on the magnitude of muscle activation. Two experiments were performed. In the first, the C5 and C6 phrenic nerve roots were selectively stimulated in 6 animals with the airway occluded, and the level of diaphragm activation was altered by adjusting the stimulation frequency. In the second experiment, all the inspiratory intercostal muscles were severed in 7 spontaneously breathing animals, so that the diaphragm was the only muscle active during inspiration, and neural drive was increased by a succession of occluded breaths. The changes in airway opening pressure and the craniocaudal displacements of ribs 5 and 10 were measured in each animal. The data showed that 1) contraction of the diaphragm causes the upper ribs to move caudally; 2) during phrenic nerve stimulation, the lower ribs move cranially when the level of diaphragm activation is low, but they move caudally when the level of muscle activation is high and the entire rib cage is exposed to pleural pressure; and 3) during spontaneous diaphragm contraction, however, the lower ribs always move cranially, even when neural drive is elevated and the change in pleural pressure is large. It is concluded that the action of the diaphragm on the lower ribs depends on both the magnitude and the mode of muscle activation. These findings can reasonably explain the apparent discrepancies between previous studies. They also imply that observations made during phrenic nerve stimulation do not necessarily reflect the physiological action of the diaphragm.  相似文献   

14.
When the parasternal intercostal in a single interspace is selectively denervated in dogs with diaphragmatic paralysis, it continues to shorten during both quiet and occluded inspiration. In the present studies, we have tested the hypothesis that this passive parasternal inspiratory shortening is due to the action of the other parasternal intercostals. Changes in length of the denervated third right parasternal were measured in eight supine phrenicotomized animals. We found that 1) the inspiratory muscle shortening increased after denervation of the third left parasternal but gradually decreased with denervation of the parasternals situated in the second, fourth, and fifth interspaces; 2) the muscle, however, always continued to shorten during inspiration, even after denervation of all the parasternals; 3) stimulating selectively the third left parasternal caused a muscle lengthening; and 4) bilateral stimulation of the parasternals in the second or the fourth interspace produced a muscle shortening. We conclude that 1) the two parasternals situated in the same interspace on both sides of the sternum are mechanically arranged in series, whereas the parasternals located in adjacent interspaces are mechanically arranged in parallel; and 2) if a denervated parasternal continues to shorten during inspiration, this is in part because of the action of the parasternals in the adjacent interspaces and in part because of other inspiratory muscles of the rib cage, possibly the external intercostals and the levator costae.  相似文献   

15.
Previous studies have shown in awake dogs that activity in the crural diaphragm, but not in the costal diaphragm, usually persists after the end of inspiratory airflow. It has been suggested that this difference in postinspiratory activity results from greater muscle spindle content in the crural diaphragm. To evaluate the relationship between muscle spindles and postinspiratory activity, we have studied the pattern of activation of the parasternal and external intercostal muscles in the second to fourth interspaces in eight chronically implanted animals. Recordings were made on 2 or 3 successive days with the animals breathing quietly in the lateral decubitus position. The two muscles discharged in phase with inspiration, but parasternal intercostal activity usually terminated with the cessation of inspiratory flow, whereas external intercostal activity persisted for 24.7 +/- 12.3% of inspiratory time (P < 0.05). Forelimb elevation in six animals did not affect postinspiratory activity in the parasternal but prolonged postinspiratory activity in the external intercostal to 45.4 +/- 16.3% of inspiratory time (P < 0.05); in two animals, activity was still present at the onset of the next inspiratory burst. These observations support the concept that muscle spindles are an important determinant of postinspiratory activity. The absence of such activity in the parasternal intercostals and costal diaphragm also suggests that the mechanical impact of postinspiratory activity on the respiratory system is smaller than conventionally thought.  相似文献   

16.
The shortening of the canine parasternal intercostals during inspiration may have a passive component, and we have previously speculated that this might result from the actions of the levator costae and external intercostals (J. Appl. Physiol. 66: 1421-1429, 1989). The present studies were designed, therefore, to evaluate the pattern of activation of these muscles in the dog and to define their action on the rib cage during breathing. The results indicate that 1) the levator costae and external intercostals in the cranial part of the rib cage are active during inspiration, both in the supine and in the prone posture; 2) the inspiratory activation of the two muscles is increased after bilateral phrenicotomy; 3) it is increased even more when the parasternal intercostals in the different interspaces are also denervated; and 4) when the levator costae and external intercostals are the only muscles active during inspiration, the ribs continue to move cranially, and the sternum, rather than moving caudally as it does in the intact animal, moves cranially as well. Therefore, we conclude that the levator costae and external intercostals in the dog have a true inspiratory function. When needed, they are capable of causing a significant expansion of the rib cage and the lung during breathing.  相似文献   

17.
When lung volume in animals is passively increased beyond total lung capacity (TLC; transrespiratory pressure = +30 cmH(2)O), stimulation of the phrenic nerves causes a rise, rather than a fall, in pleural pressure. It has been suggested that this was the result of inward displacement of the lower ribs, but the mechanism is uncertain. In the present study, radiopaque markers were attached to muscle bundles in the midcostal region of the diaphragm and to the tenth rib pair in five dogs, and computed tomography was used to measure the displacement, length, and configuration of the muscle and the displacement of the lower ribs during relaxation at seven different lung volumes up to +60 cmH(2)O transrespiratory pressure and during phrenic nerve stimulation at the same lung volumes. The data showed that 1) during phrenic nerve stimulation at 60 cmH(2)O, airway opening pressure increased by 1.5 ± 0.7 cmH(2)O; 2) the dome of the diaphragm and the lower ribs were essentially stationary during such stimulation, but the muscle fibers still shortened significantly; 3) with passive inflation beyond TLC, an area with a cranial concavity appeared at the periphery of the costal portion of the diaphragm, forming a groove along the ventral third of the rib cage; and 4) this area decreased markedly in size or disappeared during phrenic stimulation. It is concluded that the lung-deflating action of the isolated diaphragm beyond TLC is primarily related to the invaginations in the muscle caused by the acute margins of the lower lung lobes. These findings also suggest that the inspiratory inward displacement of the lower ribs commonly observed in patients with emphysema (Hoover's sign) requires not only a marked hyperinflation but also a large fall in pleural pressure.  相似文献   

18.
To assess the effect of diaphragmatic ischemia on the inspiratory motor drive, we studied the in situ isolated and innervated left diaphragm in anesthetized, vagotomized, and mechanically ventilated dogs. The arterial and venous vessels of the left diaphragm were catheterized and isolated from the systemic circulation. Inspiratory muscle activation was assessed by recording the integrated electromyographic (EMG) activity of the left and right costal diaphragms and parasternal intercostal and alae nasi muscles. Tension generated by the left diaphragm during spontaneous breathing attempts was also measured. In eight animals, left diaphragmatic ischemia was induced by occluding the phrenic artery for 20 min, followed by 10 min of reperfusion. This elicited a progressive increase in EMG activity of the left and right diaphragms and parasternal and alae nasi muscles to 170, 157, 152, and 128% of baseline values, respectively, an increase in the frequency of breathing efforts, and no change in left diaphragmatic spontaneous tension. Thus the ratio of left diaphragmatic EMG to tension rose progressively during ischemia. During reperfusion, only the frequency of breathing efforts and alae nasi EMG recovered completely. In four additional animals, left diaphragmatic ischemia was induced after the left phrenic nerve was sectioned. Neither EMG activity of inspiratory muscles nor respiratory timing changed significantly during ischemia. In conclusion, diaphragmatic ischemia increases inspiratory motor drive through activation of phrenic afferents. The changes in alae nasi activity and respiratory timing indicate that this influence is achieved through supraspinal pathways.  相似文献   

19.
The mechanical interaction of the inspiratory muscles in the generation of changes in airway pressure is unclear. Using upper thoracic spinal cord stimulation to activate the intercostal muscles (IC) and bilateral supramaximal phrenic nerve stimulation to activate the diaphragm (D), we measured the changes in airway pressure produced by separate and combined IC and D activation over a wide range of lung volumes. Changes in parasternal IC and D length were assessed by sonomicrometry. With increasing lung volume, activation of the IC and D resulted in progressive decrements in generated airway pressure. Combined IC and D contraction produced greater negative swings in airway pressure than the arithmetic sum of separate IC and D contraction alone, indicating a synergistic effect. Moreover, synergism increased progressively with increasing lung volume. During combined muscle contraction, both the IC and D shortened less than during contraction of either muscle group alone. The tendency for the parasternal muscle to lengthen for a given change in airway pressure during D contraction alone increased with increasing lung volume, suggesting that the tendency for the rib cage to recoil inward increased progressively with increasing lung volume. Likewise, the tendency of the D to lengthen for a given change in airway pressure during IC contraction alone also increased progressively with increasing lung volume, suggesting that the tendency for the abdomen-D compartment to recoil inward also increased with increasing lung volume. We conclude that the IC and D interact synergistically to produce changes in airway pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In an attempt to obtain insight in the forces developed by the parasternal intercostal muscles during breathing, changes in parasternal intramuscular pressure (PIP) were measured in 14 supine anesthetized dogs using a microtransducer method. In six animals, during bilateral parasternal stimulation a linear relationship between contractile force exerted on the rib and PIP was demonstrated (r greater than 0.95). In eight animals, during quiet active inspiration, substantial (55 +/- 11.5 cmH2O) PIP was developed. During inspiratory resistive loading and airway occlusion the inspiratory rise in PIP increased in proportion to the inspiratory fall in pleural pressure (r = 0.82). Phrenicotomy and vagotomy resulted in an increase in the inspiratory rise in PIP of 21% and 99%, respectively. During passive deflation, when the parasternal intercostals were passively lengthened, large rises (320 +/- 221 cmH2O) in intramuscular pressure were observed. During passive inflation intramuscular pressure remained constant or even decreased slightly (-8 +/- 25 cmH2O) as expected on the basis of the passive shortening of the muscles. PIP thus invariably increased when tension increased either actively or passively. From PIP it is clear that the parasternals exert significant forces on the ribs during respiratory maneuvers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号