首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the expression of inducible inflammatory genes in murine macrophages from different tissues and at different stages of inflammatory activity. Although i.v. administration of IFN-gamma (10,000 U/mouse) strongly induced expression of IP-10 mRNA in the adherent cell population of the spleen, thioglycollate-elicited peritoneal macrophages were essentially unresponsive at the same dose. In contrast, D3 mRNA was expressed in both cell populations. This differential sensitivity of IP-10 mRNA expression was not restricted to stimulation by IFN-gamma as it was also seen when LPS (25 micrograms/mouse) was administered i.v. Expression of JE and KC mRNA, which encode cytokines related to IP-10, were also differentially expressed in elicited peritoneal macrophages from mice injected with LPS. Differential sensitivity was at least partially related to the state of macrophage activation because IP-10 mRNA was highly inducible in resident but not thioglycollate-elicited peritoneal macrophages. The eliciting agent was also an important determinant because proteose-peptone-elicited peritoneal macrophages were nearly as sensitive as splenic macrophages with respect to expression of IP-10 mRNA. IFN-gamma treatment induced IP-10 and D3 mRNA rapidly and transiently with the same time course in the spleen. IP-10 mRNA was not induced by IFN-gamma in TG-elicited macrophages regardless of the time after treatment. This differential expression of IP-10 was a consequence of different concentration requirements for IFN-gamma in the two cell types; thioglycollate-elicited macrophages required five- to 10-fold more IFN-gamma than did resident cells to achieve comparable IP-10 mRNA levels whether the agent was provided in vitro or in vivo. Thus variable sensitivity for induction of IP-10 mRNA was a characteristic of the macrophage itself and was not mediated by other cellular or molecular elements present in the inflammatory peritoneal cavity. The reduced sensitivity to IFN-gamma or LPS for expression of IP-10, JE, and KC mRNA as compared with TNF-alpha or D3 mRNA suggests that this distinct pattern of regulation may be restricted to members of these two related cytokine gene families that exhibit cell-type specific chemoattractant activity.  相似文献   

2.
3.
Thioglycollate-induced peritoneal exudate cells (TG-PEC) developed increased procoagulant activity after incubation with lymphokine and lipopolysaccharide (LPS). Dilutions of up to 1/1000 for insoluble Con A and 1/200 for periodate-induced lymphokine supernatants were active in enhancing macrophage procoagulant activity (MPCA), which was detected after a 2-hr incubation period and steadily increased over 20 hr. MPCA could also be induced by antigen; peritoneal cells from sensitized B6AF1 mice with strong footpad reactions to ovalbumin (OVA) responded to as little as 0.1 microgram/ml OVA in the MPCA test in an antigen-specific manner. By contrast, PEC from sensitized CBA/J mice that gave poor in vivo responses to OVA only reacted with high concentrations of the antigen in vitro. Production of the lymphokine responsible for induction of MPCA required an Ly-1+2- T cell, a nylon wool-adherent cell, and an la-17-bearing adherent cell. The MPCA induced by lymphokine or LPS did not appear to be a serine esterase and was not inhibited by phospholipase C. Coagulation of human factor-deficient plasma with activated TG-PEC indicated a requirement for Factor X.  相似文献   

4.
5.
IL-10 inhibits cytokine production by activated macrophages   总被引:127,自引:0,他引:127  
IL-10 inhibits the ability of macrophage but not B cell APC to stimulate cytokine synthesis by Th1 T cell clones. In this study we have examined the direct effects of IL-10 on both macrophage cell lines and normal peritoneal macrophages. LPS (or LPS and IFN-gamma)-induced production of IL-1, IL-6, and TNF-alpha proteins was significantly inhibited by IL-10 in two macrophage cell lines. Furthermore, IL-10 appears to be a more potent inhibitor of monokine synthesis than IL-4 when added at similar concentrations. LPS or LPS- and IFN-gamma-induced expression of IL-1 alpha, IL-6, or TNF-alpha mRNA was also inhibited by IL-10 as shown by semiquantitative polymerase chain reaction or Northern blot analysis. Inhibition of LPS-induced IL-6 secretion by IL-10 was less marked in FACS-purified peritoneal macrophages than in the macrophage cell lines. However, IL-6 production by peritoneal macrophages was enhanced by addition of anti-IL-10 antibodies, implying the presence in these cultures of endogenous IL-10, which results in an intrinsic reduction of monokine synthesis after LPS activation. Consistent with this proposal, LPS-stimulated peritoneal macrophages were shown to directly produce IL-10 detectable by ELISA. Furthermore, IFN-gamma was found to enhance IL-6 production by LPS-stimulated peritoneal macrophages, and this could be explained by its suppression of IL-10 production by this same population of cells. In addition to its effects on monokine synthesis, IL-10 also induces a significant change in morphology in IFN-gamma-stimulated peritoneal macrophages. The potent action of IL-10 on the macrophage, particularly at the level of monokine production, supports an important role for this cytokine not only in the regulation of T cell responses but also in acute inflammatory responses.  相似文献   

6.
Production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) was investigated using cultures of mouse peritoneal exudate cells (PEC) and the macrophage cell line RAW264.7. In the presence of anti-(interferon-gamma) (IFN-gamma), NO production was markedly suppressed in the PEC culture but not in the RAW264.7 culture. In the PEC culture, LPS induced both IFN-gamma production and activation of IFN response factor-1, which leads to the gene expression of inducible NO synthase, but neither was induced in the culture of RAW264.7 cells. In addition to anti-(IFN-gamma), antibodies against interleukin (IL)-12 and IL-18 showed a suppressive effect on LPS-induced NO production in the PEC culture, and these antibodies in synergy showed strong suppression. Stimulation of the PEC culture with IL-12 or IL-18 induced production of IFN-gamma and NO, and these cytokines, in combination, exhibited marked synergism. Stimulation of the culture with IFN-gamma induced production of NO, but not IL-12. The macrophage population in the PEC, prepared as adherent cells, responded well to LPS for IL-12 production, but weakly for production of IFN-gamma and NO. The macrophages also responded well to IFN-gamma for NO production. For production of IFN-gamma by stimulation with LPS or IL-12 + IL-18, nonadherent cells were required in the PEC culture. Considering these results overall, the indirect pathway, through the production of intermediates (such as IFN-gamma-inducing cytokines and IFN-gamma) by the cooperation of macrophages with nonadherent cells, was revealed to play the main role in the LPS-induced NO production pathway, as opposed to the direct pathway requiring only a macrophage population.  相似文献   

7.
Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.  相似文献   

8.
Macrophage responses to recombinant IFN-gamma decline during aging, as measured by two criteria of macrophage activation, O2- and TNF-alpha secretion. The production of O2- by macrophages in response to opsonized-zymosan and recombinant rat IFN-gamma is 75% lower in 23-month-old rats than in 3-month-old rats. Furthermore, the secretion of TNF-alpha in response to IFN-gamma and LPS is almost absent in macrophages from aged rats. Production of both O2- and TNF-alpha by resident peritoneal macrophages from specific pathogen-free aged rats in response to priming and triggering stimuli was partially or fully restored by implantation of syngeneic pituitary grafts from young rats. These data demonstrate that macrophages from aged rats are defective in their response to a priming signal induced by IFN-gamma, and they suggest that impaired macrophage responses during aging may be reversible.  相似文献   

9.
In a previous study we demonstrated that IFN-gamma induced an increase in the number of glucocorticoid receptors (GR) in murine macrophages. To examine further the environmental signals involved in regulation of macrophage GR availability, we asked whether another classical macrophage-activating factor, LPS, would induce an increase in GR number in the macrophage cell line, RAW 264.7, and in primary macrophages from C3H mice. We report that treatment of RAW 264.7 cells and peritoneal exudate macrophages from C3H/OuJ mice with protein-free, phenol water-extracted LPS (PW-LPS) induced an increase in the number of GR. A significant increase in GR number was observed as early as 4 h after PW-LPS treatment, was maximal at 12 h, and remained heightened through 48 h. Optimal induction of the GR by PW-LPS was observed when murine macrophages were treated with 10 ng/ml of PW-LPS. The LPS-induced increase in macrophage GR number could be inhibited by polymyxin B. Macrophages obtained from the LPS hyporesponsive C3H/HeJ strain did not respond to PW-LPS, but did respond to protein-rich, butanol-extracted LPS with a modest increase in GR number after treatment with 2 micrograms/ml. Moreover, taxol, an antineoplastic agent with LPS mimetic activity, also increased GR number in murine macrophages. These results suggest that LPS is not only an important macrophage-activating signal, but may also be important in sensitizing the cell for negative regulatory events such as feedback inhibition by glucocorticoids.  相似文献   

10.
MA158.2, a rat monoclonal antibody with binding specificity for cells of the monocyte-macrophage lineage, reacts with an antigen (158.2) whose expression is enhanced on mononuclear cells activated to the tumoricidal phenotype by treatment with lymphokine supernatant containing macrophage activating factor (MAF). The functional relevance of enhanced expression of this antigen has been examined in mouse peritoneal macrophages treated with a variety of immunomodulatory agents and assayed for augmented macrophage-mediated defense reactions, including O-2 production, microbicidal, and tumoricidal activity. An interferon-gamma (IFN-gamma) preparation produced by recombinant DNA technology induced a dose-dependent increase in expression of the 158.2 antigen in inflammatory macrophages which was accompanied by acquisition of microbicidal activity against Listeria monocytogenes. However, these cells did not express tumoricidal activity and induction of this property required concomitant exposure to lipopolysaccharide (LPS). Similar results were obtained using macrophages elicited with pyran copolymer. Exposure to LPS alone induced enhanced expression of antigen 158.2 but did not elicit microbicidal activity. Macrophages challenged with IFN-alpha, IFN-beta, MDP, and bestatin did not exhibit increased 158.2 and also failed to acquire tumoricidal activity when treated concomitantly with LPS. Collectively, these data indicate that the MA 158.2 antibody recognizes an antigen expressed by macrophage populations displaying the so-called primed phenotype in which microbicidal activity is expressed but in which induction of tumoricidal activity requires the addition of a second signal such as LPS.  相似文献   

11.
LPS is well recognized for its potent capacity to activate mouse macrophages to produce NO, an important inflammatory mediator in innate host defense. We demonstrate here that, although inducing little NO alone, DNA from both Gram-negative and Gram-positive bacteria synergizes with subthreshold concentrations of LPS (0.3 ng/ml) to induce NO in cultures of RAW 264.7 macrophages. The effects of the DNA are mimicked by synthetic CpG-containing oligodeoxynucleotides but not by non-CpG-containing oligodeoxynucleotides. This synergistic activity is not inhibited by neutralizing Abs against IFN. Preincubation of macrophages with DNA for 8-24 h suppresses subsequent synergistic macrophage responses to DNA/LPS, whereas prolonged pretreatment with LPS enhances synergy. RT-PCR analysis indicates that the mRNA levels of the inducible NO synthase gene are also coordinately suppressed or induced. These findings indicate that temporally controlled, synergistic interactions exist between microbial DNA and LPS in the induction of macrophage NO via enhanced inducible NO synthase gene expression.  相似文献   

12.
Here we report that IL-3 (also referred to as multi-CSF because of its colony-stimulating activity on a variety of hemopoietic cell lineages) can function as a macrophage-activating factor (MAF). IL-3 was able to regulate the expression of class II MHC Ag and the cellular interaction molecule lymphocyte function-associated Ag-1 on the surface of murine peritoneal exudate cells. The kinetics of IL-3-induced Ia expression appeared to be distinct from that induced by either IFN-gamma, IL-4, or granulocyte-macrophage-CSF. IL-3 was also distinguished from these factors by the finding that it did not induce macrophage tumoricidal activity. In addition to its inherent MAF activities, IL-3 also showed a marked synergy with low doses of LPS (0.05 to 0.5 ng/ml) as well as IFN-gamma in Ia induction. When lymphocyte function-associated Ag-1 expression was evaluated, the effects of these stimuli appeared to be only additive. Although LPS has been shown to inhibit IFN-gamma-induced Ia expression, in our experiments this property of LPS is manifest only when present at doses greater than or equal to 50 ng/ml. At lower concentrations, LPS potentiated both IL-3- and IFN-gamma-induced class II MHC Ag expression. Data presented here also suggest that the synergistic interactions between low doses of LPS and IL-3 are not mediated by known LPS-inducible cytokines of macrophage origin, because rIL-1, TNF-alpha, or IL-6 did not enhance the response to IL-3. Because IL-3 can also participate in the regulation of IL-1 expression, it appears that IL-3 can function as a MAF which selectively regulates the accessory cell characteristics required for Ag presentation, as opposed to the cytolytic functions of the macrophage.  相似文献   

13.
A point mutation in Toll-like receptor 4 (Tlr4) gene in C3H/HeJ mice underlies a defect in LPS-induced cytokine production by peritoneal macrophages (PMphi;). Whether the C-C and the C-X-C chemokines are induced differently by LPS between alveolar macrophages (AMphi;) and PMphi; in this mice remains unclear. Thus, we examined the expression and regulation of macrophage inflammatory protein-1alpha (MIP-1alpha) and macrophage inflammatory protein-2 (MIP-2) in C3H/HeJ macrophages. These results showed that the accumulation of MIP-1alpha and MIP-2 mRNA increased dose dependently in response to LPS. PMphi; responded to LPS to produce significantly higher levels of both chemokine mRNA and protein than AMphi;. In addition, both macrophages produced much more MIP-2 than MIP-1alpha by the same doses of LPS stimulation. Moreover, the chemokine production by C3H/HeN macrophages was significantly higher than that of the C3H/HeJ macrophages. IFN-gamma suppressed the LPS-induced MIP-1alpha release but enhanced the LPS-induced MIP-2 secretion in both macrophages. These results show that the chemokine production was induced and regulated differentially in AMphi; and PMphi;.  相似文献   

14.
We determined whether endogenously produced PGE2 can down-regulate the tumoricidal properties of macrophages by a negative feedback mechanism. Peritoneal exudate macrophages or resident peritoneal macrophages of mice were incubated in medium (control) or in medium containing IFN-gamma and LPS. Activated macrophages were highly tumoricidal against syngeneic melanoma cells and secreted high levels of PGE2. Treatment with indomethacin or diclofenac sodium (voltaren) completely inhibited the production and secretion of PGE2 but not the tumoricidal activity of activated macrophages measured either immediately after activation or 1 to 3 days thereafter. Finally, the addition of exogenous PGE2 did not alter the ability of peritoneal exudate macrophages to respond to IFN-gamma or of LPS to produce high levels of tumor cell lysis. Collectively, these results show that PGE2 produced by activated macrophages is not a down-regulator of their tumoricidal activity against adherent tumor cells.  相似文献   

15.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

16.
Treatment of mouse peritoneal macrophages with IFN-gamma augmented the intracellular content of S-adenosylmethionine, as measured by quantitative high-performance liquid chromatography. Accumulation of S-adenosylhomocysteine, a competitive product of S-adenosylmethionine, was not detectable, either by direct measurement of absorbance or by radioisotopic techniques in IFN-gamma-treated macrophages. However, accumulation of S-adenosylhomocysteine was observed after treatment of macrophages with known inhibitors of S-adenosylhomocysteine catabolism. No inhibition of phospholipid methylation was observed upon IFN-gamma treatment, indicating that no reduction of the S-adenosylmethionine to S-adenosylhomocysteine ratio is induced by IFN-gamma in murine macrophages. The increased content of S-adenosylmethionine was associated with the acquisition of tumoricidal activity by macrophages upon IFN-gamma treatment. LPS also augmented the cellular content of S-adenosylmethionine and activated macrophages to become cytotoxic, suggesting a common mechanism of action for IFN-gamma and LPS in macrophage activation. Treatment of macrophages with cycloleucine, an agent that induces depletion of cellular S-adenosylmethionine, made the macrophages refractory to induction of cytolytic activity by IFN-gamma, suggesting a critical role for S-adenosylmethionine in macrophage activation.  相似文献   

17.
Modulation of protein expression during interferon-gamma (IFN-gamma)-lipopolysaccharide (LPS)-mediated macrophage tumoricidal activation has been examined by metabolic radiolabeling of various murine peritoneal macrophage populations with [35S]methionine followed by SDS-PAGE analysis. Although both IFN-gamma and LPS are capable of stimulating the expression of several proteins when used independently, combined treatment induced the enhanced or de novo expression of a 120,000 dalton polypeptide. The expression of this protein was synergistically regulated by both IFN-gamma and LPS in a manner strongly reminiscent of the functional synergism that these two agents exhibit with respect to induction of tumoricidal activity. p120 expression could be seen first at approximately 3 hr after the addition of both agents, reached optimal expression by 6 hr, and maintained elevated synthesis for up to 24 hr. This time course corresponds closely to that seen for the acquisition of tumoricidal competence. Macrophages elicited in the primed state of activity in vivo with methyl vinyl ether co-polymer II (MVE-II) did not express p120, but could be induced to do so when treated with low doses of LPS. Under similar conditions, MVE-II-elicited cells also acquire tumoricidal activity. Macrophages obtained from mice chronically infected with bacillus Calmette-Guerin constitutively expressed both p120 and cytolytic activity. If such macrophages were cultured for 24 hr, the expression of both events decayed and was lost, but could be restored by treatment with low doses of LPS. Thus the data support a strong correlation between the expression by macrophages of a novel 120,000 dalton protein and the expression of tumor cytotoxicity.  相似文献   

18.
Bacterial endotoxins or lipopolysaccharides (LPS) are unique glycolipids present in the outer cell membrane of all gram-negative bacteria. It is now generally recognized that LPS is of primary importance in initiating the pathophysiological changes that often accompany gram-negative bacillary infections in humans including hypotensive shock, disseminated intravascular coagulation, and metabolic abnormalities. Although the biochemical mechanisms of these changes are not well understood, increasing emphasis has been placed on defining the biochemical response of the macrophage (M phi) to LPS. In this paper we describe two M phi-derived factors induced by LPS that may be important in the expression of endotoxic activity in the host. These are a procoagulant activity, which is present on the cell membrane of LPS-treated rabbit liver M phi and acts by directly activating coagulation factor X, and a factor released into the supernatant by LPS-treated peritoneal exudate M phi, which suppresses steroidogenesis in explanted adrenocortical cells. The potential role of the M phi in regulating the binding of LPS to high-density lipoproteins through the induction of acute phase proteins is also considered.  相似文献   

19.
20.
The hamster IgM mAb 5D3 is specific for an 73-kDa LPS receptor on murine leukocytes. This mAb inhibits binding of radiolabeled LPS to splenocytes and acts as an agonist for induction of LPS-mediated changes in macrophage function. Resident peritoneal macrophages treated with IFN-gamma and mAb 5D3 developed potent cytotoxic activity against tumor cells. Cells treated with IFN-gamma or mAb 5D3 alone were inactive. Macrophage cytotoxic activity induced by IFN-gamma and mAb 5D3 was inhibited by NGMMLA and coincident with high levels of NO2-released into culture fluids. These data show that mAb 5D3 serves as an effective trigger signal for induction of cytotoxic activity with IFN-gamma-primed macrophages. Indeed, mAb 5D3 exactly mimicked the effects of LPS in these same systems. Unlike LPS, effects of mAb 5D3 on induction of macrophage cytotoxic activity and production of nitrogen oxides was abrogated after boiling, and not affected by addition of polymyxin B. The effects of LPS and mAb 5D3 as a trigger signal for IFN-gamma-primed macrophages were associated with production of TNF activity in culture fluids and inhibited by mAb against rTNF-alpha. Expression of class II MHC on macrophages induced by IFN-gamma treatment was suppressed by both LPS and mAb 5D3. These suppressive effects of LPS and mAb 5D3 were not affected by NGMMLA or mAb against rTNF-alpha. Finally, macrophages treated with LPS or mAb 5D3 before exposure to IFN-gamma and LPS or mAb 5D3 did not develop cytotoxic activity or high levels of NO2- in the culture fluids. These same cells developed both effector activities after addition of rTNF-alpha. These results in toto identify the 73-kDa protein as a receptor that mediates LPS-induced changes in macrophage effector function. The mAb 5D3 serves as a specific and defined reagent agonist for analysis of LPS receptor-linked change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号