首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of Coliphage T5: Ultrastructural and Biochemical Studies   总被引:10,自引:5,他引:5       下载免费PDF全文
Electron microscopic studies of Escherichia coli infected with bacteriophage T5(+) have revealed that host nuclear material disappeared before 9 min after infection. This disappearance seemed to correspond to the breakdown of host deoxyribonucleic acid (DNA) into acid-soluble fragments. Little or no host DNA thymidine was reincorporated into phage DNA, except in the presence of 5-fluorodeoxyuridine (FUdR). Progeny virus particles were observed in the cytoplasm 20 min postinfection. Most of these particles were in the form of hexagonal-shaped heads or capsids, which were filled with electron-dense material (presumably T5 DNA). A small percentage (3 to 4%) of the phage heads appeared empty. On rare occasions, crystalline arrays of empty heads were observed. Nalidixic acid, hydroxyurea, and FUdR substantially inhibited replication of T5 DNA. However, these agents did not prevent virus-induced degradation of E. coli DNA. Most of the phage-specified structures seen in T5(+)-infected cells treated with FUdR or with nalidixic were in the form of empty capsids. Infected cells treated with hydroxyurea did not contain empty capsids. When E. coli F was infected with the DO mutant T5 amH18a (restrictive conditions), there was a small amount of DNA synthesis. Such cells contained only empty capsids, but their numbers were few in comparison to those in cells infected under permissive conditions or infected with T5(+). The cells also failed to lyse. These results confirm other reports which suggest that DNA replication is not required for the synthesis of late proteins. The data also indicate that DNA replication influences the quantity of viral structures being produced.  相似文献   

2.
A Shapira  A Kohn 《Cryobiology》1974,11(5):452-464
The damage by freeze-drying to bacteriophage T4 was analysed in order to locate the site and the mechanism of damage. As a result of freeze-drying of bacteriophage T4, its head coat was damaged so as to lead to the loss of the DNA and emptying of the head. The tail assembly was generally undamaged and the freeze-dried phage preserved the biological activities concerned with absorption and injection (inhibition of host colony formation, inhibition of induction of beta-galactosidase, induction of changes in the potassium content in the host bacteria).The 2 mechanisms by which the freeze-drying damages the phage arc: osmotic shock, which occurs mainly during the resuspension of the FD phage, and the drying per se, i.e., the removal of water from the head protein.  相似文献   

3.
Bacteriophage phiX174 is an icosahedral phage which attaches to host cells without the aid of a complex tail assembly. When phiX174 was mixed with cell walls isolated from the bacterial host, the virions attached to the wall fragments and the phage deoxyribonucleic acid (DNA) was released. Attachment was prevented if the cell walls were treated with chloroform. Release of phage DNA, but not viral attachment, was prevented if the cell walls were incubated with lysozyme or if the virions were inactivated with formaldehyde. Treatment of the cell walls with lysozyme released structures which were of uniform size (6.5 by 25 nm). These structures attached phiX174 at the tip of one of its 12 vertices, but the viral DNA was not released. The virions attached to these structures were oriented with their fivefold axis of symmetry normal to the long axis of the structure. No virions were attached to these structures by more than one vertex. Freeze-etch preparations of phiX174 adsorbed to intact bacteria showed that the virions were submerged to one half their diameter into the host cell wall, and the fivefold axis of symmetry was normal to the cell surface. A second cell could not be attached to the outwardly facing vertex of the adsorbed phage and thus the phage could not cross-link two cells. When the virions were labeled with (3)H-leucine, purified, and adsorbed to Escherichia coli cells, about 15% of the radioactivity was recovered as low-molecular-weight material from spheroplasts formed by lysozyme-ethylenediaminetetraacetic acid. Other experiments revealed that about 7% of the total parental virus protein label could be recovered in newly formed progeny virus.  相似文献   

4.
Regulation of Bacteriophage T5 Development by ColI Factors   总被引:14,自引:10,他引:4  
The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb(+) cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb(+) cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis.  相似文献   

5.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

6.
Twenty-eight coliphages were studied for their susceptibility to four systems of host control variation in Escherichia coli. Both temperate and virulent phages were studied, including phages with ribonucleic acid, double- and single-stranded deoxyribonucleic acid (DNA) and glucosylated DNA. The systems examined were E. coli C-K, K-B, B-K, and K-K(P1). The C-K, K-B, and B-K systems affected temperate phages and nonlysogenizing mutants derived from temperate phages. In general, these systems did not restrict virulent phages. Phage 21e, a variant of phage 21, lost the ability to undergo restriction in the C-K and B-K systems, but retained susceptibility to the K-B and K-K(P1) systems. This suggests that the genetic site(s) on the phage, as well as in the host, determines susceptibility to host-controlled variation. Both temperate and dependent virulent phages were susceptible to the host control system resulting from the presence of prophage P1. The autonomous and small virulents were not susceptible. In a given system, the various susceptible phages differed widely in their efficiency of plating on the restricting host. If the few infections that occur arise in rare special cells, then different populations of special cells are available to different phage species. For most phage types, when a susceptible phage infected a nonrestricting host, the progeny showed the specificity appropriate to that host. Behavior of T3 was exceptional, however. When T3 obtained from E. coli K infected E. coli C or B, some of the progeny phages retained K host specificity, whereas others acquired the specificity of the new host.  相似文献   

7.
Synthesis of host-specific and phage-specific messenger ribonucleic acid (mRNA) was studied in bacteria infected by unmodified (T1 . B) or modified [T1 . B(P1)] bacteriophage T1. In a "standard" infection of Escherichia coli B by T1 . B (no host-controlled modification involved), the rate and amount of T1 mRNA synthesis was intermediate between those values reported for infections by a virulent phage such as T4 or a temperate phage such as lambda. The initial rate of mRNA synthesis was slightly increased after T1 . B(P1) infection of E. coli B in comparison with T1 . B infection of the same host. Little or no phage mRNA synthesis could be detected in T1 . B infection of E. coli B(P1). Phage mRNA synthesis in T1 . B(P1)-infected E. coli B(P1) cells was approximately the same in amount as that seen in T1 . B(P1) infection of E. coli B. Synthesis of host-specific mRNA continued throughout the latent period in all infections studied. However, the enzyme beta-galactosidase could not be induced, except after T1 . B infection of E. coli B(P1). In an attempt to understand the apparent differences in mRNA synthesis after infection of E. coli B by phages T1 . B or T1 . B(P1), the effect of altered T1 deoxyribonucleic acid (DNA) methylation on mRNA synthesis was studied. Methyl-deficient T1 DNA, made in cells infected with ultraviolet-irradiated phage T3, inhibited (14)C-uridine incorporation more strongly than normal T1. One passage of methyl-deficient T1 through E. coli B restored uracil incorporation rates to those seen with ordinary T1. This suggests that methylation of T1 DNA can influence the rate of phage mRNA synthesis. However, attempts to relate the difference in mRNA synthesis seen between T1 . B and T1 . B(P1) in E. coli B to the activity of the P1 modification gene were not conclusive.  相似文献   

8.
Phagolessin A58, an antibiotic substance active against a number of bacterial viruses, was studied for activity against the seven T phages. Only three of the seven phages—T1, T3, and T7—proved to be sensitive to the antibiotic. The antibiotic caused a direct, apparently irreversible inactivation of free phage particles. A study of the properties of the inactivated phage particles showed that the particles retained the ability to kill host cells and to exert mutual exclusion against an unrelated phage after infectivity was lost. There was a progressive loss in these two properties when higher concentrations of antibiotic were used to inactivate the phage. Results with inactivated T3 and T7 revealed that these two properties—the ability to kill host cells and to exclude an unrelated phage—were lost at a different rate. They were, therefore, presumed to be different properties of these particular phage particles. The inactivation of phage by phagolessin A58 was inhibited by desoxyribose nucleic acid and to a lesser extent by ribose nucleic add. Cytosine, thymine, adenine, guanine, and cysteine failed to inhibit the reaction.  相似文献   

9.
Phage T7 adsorbed to and lysed cells of Shigella sonnei D(2) 371-48, although the average burst size was only 0.1 phage per cell (abortive infection). No mechanism of host-controlled modification was involved. Upon infection, T7 rapidly degraded host deoxyribonucleic acid (DNA) to acid-soluble material. Phage-directed DNA synthesis was initiated normally, but after a few minutes the pool of phage DNA, including the parental DNA, was degraded. Addition of chloramphenicol, at the time of phage infection, prevented both the initiation of phage-directed DNA synthesis and the degradation of parental phage DNA. Addition of chloramphenicol 4.5 min after phage was added permitted the onset of phage-directed DNA synthesis but prevented breakdown of phage DNA. Mutants of T7 (ss(-) mutants) have been isolated which show normal growth in strain D(2) 371-48. Upon mixed infection of this strain with T7 wild type and an ss(-) mutant, infection was abortive; no complementation occurred. The DNA of the ss(-) mutants was degraded in mixed infection like that of the wild type. Revertant mutants which have lost their ability to grow on D(2) 371-48 were isolated from ss(-) mutants; they are, in essence, phenotypically like T7 wild type. Independently isolated revertants of ss(-) mutants did not produce ss(-) recombinants when they were crossed among themselves. When independently isolated ss(-) mutants were crossed with each other, wild-type recombinants were found; ss(-) mutants could then be mapped in a cluster compatible with the length of one cistron. We concluded that T7 codes for an active, chloramphenicol-sensitive function [ss(+) function (for suicide in Shigella)] which leads to the breakdown of phage DNA in the Shigella host.  相似文献   

10.
Degradation of bacterial deoxyribonucleic acid (DNA) after infection with T4 bacteriophage was studied in an endonuclease I-deficient host. The kinetics of degradation were similar to those seen in other hosts with a normal level of this enzyme. Irradiation of extracellular phage with ultraviolet (UV) destroyed the capacity of the infecting virus to induce extensive breakdown of host DNA, which was, however, converted to high-molecular-weight material. Addition of chloramphenicol to T4-infected cells provided data which can be interpreted to indicate the involvement of at least two endodeoxyribonucleases and one exodeoxyribonuclease having a high degree of specificity. A model is proposed showing the sequential action of two endodeoxyribonucleases followed by an exodeoxyribonuclease in the degradation of host DNA. The appearance of these hydrolytic enzymes requires protein synthesis. Infections leading to partial degradation only (UV-irradiated phages, gene 46 mutants) effectively inhibited the synthesis of bacterial messenger ribonucleic acid and of beta-galactosidase.  相似文献   

11.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

12.
T Ohtomo  T Yamada    K Yoshida 《Applied microbiology》1988,54(10):2486-2491
The effects of drying time during freeze-drying on the outermost cell surface of an encapsulated strain of Staphylococcus aureus S-7 (Smith, diffuse) were investigated, with special attention paid to capsule and slime production. To quantify capsule and slime production, capsule antigen production and cellular characteristics such as growth type in serum-soft agar, cell volume index, and clumping factor reaction were examined. After freeze-drying the colonial morphology of strain S-7 was altered from a diffuse to a compact type in serum-soft agar. In accordance with these changes, the titer of the clumping factor reaction increased while the cell volume index, capsule and slime production, and capsule antigen production were markedly decreased in parallel with the period of freeze-drying. The ability of the strain to adhere to collagen, fibrinogen, and soybean lectin was also compared before and after freeze-drying. Fibrinogen levels slightly increased when 10% skim milk and 2% honey were used as cryoprotective agents and showed a remarkable increase when 0.05 M phosphate buffer was used as a control. Also, the ability of strain S-7 to adhere to soybean lectin declined, whereas no changes were observed for collagen under any conditions. Strain S-7 was phage nontypable before freeze-drying but the number of typable cells increased after freeze-drying; phage-typable cells reacted to phage 52 alone after 5 h of freeze-drying, but additional cells also proved to be phage typable to phage 42E after 10 h. Electron micrographs indicated that strain S-7, an encapsulated strain, was converted to an unencapsulated state after freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The rate of protein synthesis by Escherichia coli markedly decreased within 1 min after phage T4 infection, whereas a complete cessation of protein synthesis was observed within at least 25 sec after T4 ghost infection. The cellular level of amino acids and aminoacyl-transfer ribonucleic acid (tRNA) did not change drastically upon infection with ghosts, indicating that the inhibition of protein synthesis took place at a step(s) beyond aminoacyl-tRNA formation. The host messenger RNA remained intact and still bound to ribosomes shortly after ghost infection. Kinetic studies of the effect of ghosts on host protein synthesis revealed that nascent peptide chains on ribosomes were not released upon ghost infection.  相似文献   

14.
The simple two-chamber diffusion method was improved to study the diffusion properties of bacteriophage (phage) T4 through a model biofilm agarose gel membrane (AGM) embedded with dead host Escherichia coli K12 cells. The apparent diffusion coefficient (D(app) ) of phage T4 was calculated to be 2.4 × 10(-12) m(2) /s in 0.5% AGM, which was lower than the coefficient of 4.2 × 10(-12) m(2) /s in 0.5% AGM without host cells. The phage adsorption process by dead host cells slowed the apparent phage diffusion. The Langmuir adsorption equation was used to simulate phage adsorption under different multiplicity of infections (MOIs); the maximum adsorbed phage MOI was calculated to be 417 PFU/CFU, and the Langmuir adsorption constant K(L) was 6.9 × 10(-4) CFU/PFU. To evaluate the effects of phage proliferation on diffusion, a simple syringe-based biofilm model was developed. The phage was added into this homogenous biofilm model when the host cells were in an exponential growth phase, and the apparent diffusion coefficient was greatly enhanced. We concluded that D(app) of phages through biofilms could be distinctly affected by phage adsorption and proliferation, and that the idea of D(app) and these methods can be used to study diffusion properties through real biofilms.  相似文献   

15.
Phage T7 infects male (F-plasmid-carrying) Escherichia coli cells abortively, whereas the closely related phage T3 grows normally. The inability or ability of phage to replicate in male host cells depends on whether the right end of gene 1 (coding for the phage-specific RNA polymerase) consists of T7 or T3 DNA base sequences.  相似文献   

16.
The effects of drying time during freeze-drying on the outermost cell surface of an encapsulated strain of Staphylococcus aureus S-7 (Smith, diffuse) were investigated, with special attention paid to capsule and slime production. To quantify capsule and slime production, capsule antigen production and cellular characteristics such as growth type in serum-soft agar, cell volume index, and clumping factor reaction were examined. After freeze-drying the colonial morphology of strain S-7 was altered from a diffuse to a compact type in serum-soft agar. In accordance with these changes, the titer of the clumping factor reaction increased while the cell volume index, capsule and slime production, and capsule antigen production were markedly decreased in parallel with the period of freeze-drying. The ability of the strain to adhere to collagen, fibrinogen, and soybean lectin was also compared before and after freeze-drying. Fibrinogen levels slightly increased when 10% skim milk and 2% honey were used as cryoprotective agents and showed a remarkable increase when 0.05 M phosphate buffer was used as a control. Also, the ability of strain S-7 to adhere to soybean lectin declined, whereas no changes were observed for collagen under any conditions. Strain S-7 was phage nontypable before freeze-drying but the number of typable cells increased after freeze-drying; phage-typable cells reacted to phage 52 alone after 5 h of freeze-drying, but additional cells also proved to be phage typable to phage 42E after 10 h. Electron micrographs indicated that strain S-7, an encapsulated strain, was converted to an unencapsulated state after freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
H Souzu 《Cryobiology》1973,10(5):427-431
Freeze-thawing or freeeze-drying of yeast cells increased the amount of total lipid and phospholipid extractable to the level of the cell's total lipid contents. However, the amount of total lipid and phospholipid extractable from intact cells was usually less than half of these values.Phospholipase activity was apparent after freeze-thawing or freeze-drying of the cells, and phospholipids in the cells were decomposed to diglyceride and phosphoryl groups. Lipase activity was higher at pH 3–4.5, but at pH 6, practically no activity was noted.The cells incubated in medium at pH 6 after freeze-thawing or freeze-drying showed higher survivals than the cells incubated at pH 4.4 after the same treatments.  相似文献   

18.
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.  相似文献   

19.
The process of phage T4 DNA injection into the host cell was studied under a fluorescent microscope, using 4',6-diamidino-2-phenylindole as a DNA-specific fluorochrome. The phage DNA injection was observed when spheroplasts were infected with the artificially contracted phage particles having a protruding core. The DNA injection was mediated by the interaction of the core tip with the cytoplasmic membrane of the spheroplast. A membrane potential was not required for the process of DNA injection. On the other hand, DNA injection upon infection by intact noncontracted phage of the intact host cell was inhibited by an energy poison. Based on these observations, together with results from previous work, a model for the T4 infection process is presented, and the role of the membrane potential in the infection process is discussed.  相似文献   

20.
The exchange of radioactivity between lymphocytes, labelled with (3H) thymidine after stimulation with Concanavalin A, and recipient V79 fibroblasts in culture was studied. The radioactive material involved in this exchange was macromolecular deoxyribonucleic acid as well as its breakdown products. This deoxyribonucleic acid from lymphocytes localised in the nuclei of the host cells soon after contact between donor and recipients. This occurred even when the V79 fibroblasts were confluent at high cell density, and thus in a steady, non-growing state with respect to cell numbers.
The fate of the radioactive donor lymphocyte deoxyribonucleic acid, substituted with bromodeoxyuridine, was followed in the recipient cells by analysing its buoyant density in caesium chloride gradients. This deoxyribonucleic acid was found to become associated with the nuclear deoxyribonucleic acid of the host cells, involving both retention of relatively intact donor deoxyribonucleic acid as well as its breakdown and re-utilisation for host cell deoxyribonucleic acid synthesis. Nongrowing recipient cells were found to retain the donor deoxyribonucleic acid in relatively intact form for much longer periods than when the same cells were in logarithmic growth phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号