首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2′-5′-oligoadenylate synthetase gene (2′-5′ OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2′-5′ OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.  相似文献   

2.
Natural killer (NK) cell activation is well orchestrated by a wide array of NK cell receptor repertoire. T-cell immunoglobulin and ITIM domain (TIGIT) receptor was recently defined as an inhibitory receptor that is expressed on NK cells and T cells. TIGIT receptor/poliovirus receptor (PVR) ligand engagement signaling inhibits cytotoxicity mediated by NK and CD8+ T cells. However, it is unclear how TIGIT/PVR signaling regulates cytokine secretion in NK cells. Here we show that TIGIT/PVR engagement suppresses interferon-γ (IFN-γ) production of NK cells. TIGIT transgenic NK cells generate less IFN-γ undergoing TIGIT/PVR ligation. Moreover, TIGIT knock-out NK cells produce much more IFN-γ. TIGIT/PVR ligation signaling mediates suppression of IFN-γ production via the NF-κB pathway. We identified a novel adaptor β-arrestin 2 that associates with phosphorylated TIGIT for further recruitment of SHIP1 (SH2-containing inositol phosphatase 1) through the ITT-like motif. Importantly, SHIP1, but not other phosphatases, impairs the TNF receptor-associated factor 6 (TRAF6) autoubiquitination to abolish NF-κB activation, leading to suppression of IFN-γ production in NK cells.  相似文献   

3.
4.
Interferon (IFN)-τ secreted only by ruminant endometrium, helps in maternal recognition of pregnancy and exhibit antiviral and antiproliferative activity. Among different types of IFN-τ, IFN-τ1c and IFN- τ3a are the most highly expressed isoforms. In the present study structure of INF-τ1c was predicted using homology modelling. The best model was selected based on overall stereo-chemical quality. The generated 3D structure of the Interferon-τ1c protein of Bos taurus was predicted using the ovine interferon-τ (PDB ID: 1B5L_A) as template. The structure comprises of 5 α helices separated by loop regions, which is similar to the one predicted for other IFNs. Molecular interactions of bovine IFN-τ1c with human interferon Type 1 receptor (IFNAR1) was explored in an attempt to predict human IFNAR1 binding sites of IFN-τ1c.  相似文献   

5.
6.
Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3CD4+CD8CXCR4+CCR5 intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression.  相似文献   

7.
8.
9.
10.
Stimulation of TLR7/9 by their respective ligands leads to the activation of IκB kinase α (IKKα) and Interferon Regulatory Factor 1 (IRF-1) and results in interferon (IFN)-β production in conventional dendritic cells (cDC). However, which other signaling molecules are involved in IKKα and IRF-1 activation during TLR7/9 signaling pathway are not known. We and others have shown that Bruton''s Tyrosine Kinase (BTK) played a part in TLR9-mediated cytokine production in B cells and macrophages. However, it is unclear if BTK participates in TLR7/9-induced IFN-β production in cDC. In this study, we show that BTK is required for IFN-β synthesis in cDC upon TLR7/9 stimulation and that stimulated BTK-deficient cDC are defective in the induction of IKKα/β phosphorylation and IRF-1 activation. In addition, we demonstrate that Protein Kinase C µ (PKCµ) is also required for TLR7/9-induced IRF-1 activation and IFN-β upregulation in cDC and acts downstream of BTK. Taken together, we have uncovered two new molecules, BTK and PKCµ, that are involved in TLR7/9-triggered IFN-β production in cDC.  相似文献   

11.
Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1–10 µg/ml dsRNA, 0.1–1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05–0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.  相似文献   

12.
Immunosenescence predisposes the elderly to infectious and autoimmune diseases and impairs the response to vaccination. We recently demonstrated that ageing also impedes development of transplantation tolerance. Unlike their young counterparts (8-12 weeks of age) aged male recipients (greater than 12 months of age) transplanted with a full MHC-mismatched heart are resistant to tolerance mediated by anti-CD45RB antibody. Surprisingly, either chemical or surgical castration restored tolerance induction to levels observed using young recipients. Based on the strong impact of endocrine modulation on transplant tolerance, we explored the impact of ageing and castration on the immune system. Here we report a significant increase in the percentage of T cells that produce interferon-γ (IFN-γ) in aged male versus young male animals and that the overall increase in IFN-γ production was due to an expansion of IFN-γ-producing memory T cells in aged animals. In contrast to IFN-γ production, we did not observe differences in IL-10 expression in young versus old male mice. We hypothesized that endocrine modulation would diminish the elevated levels of IFN-γ production in aged recipients, however, we observed no significant reduction in the percentage of IFN-γ+ T cells upon castration. Furthermore, we neutralized interferon-γ by antibody and did not observe an effect on graft survival. We conclude that while elevated levels of interferon-γ serves as a marker of tolerance resistance in aged mice, other as yet to be identified factors are responsible for its cause. Defining these factors may be relevant to design of tolerogenic strategies for aged recipients.  相似文献   

13.
14.
Interferons-alpha (IFN-α) are the expressed gene products comprising thirteen type I interferons with protein pairwise sequence similarities in the 77–96% range. Three other widely expressed human type I interferons, IFN-β, IFN-κ and IFN-ω have sequences 29–33%, 29–32% and 56–60% similar to the IFN-αs, respectively. Type I interferons act on immune cells by producing subtly different immune-modulatory effects upon binding to the extracellular domains of a heterodimeric cell-surface receptor composed of IFNAR1 and IFNAR2, most notably anti-viral effects. IFN-α has been used to treat infection by hepatitis-virus type C (HCV) and a correlation between hyperactivity of IFN-α-induced signaling and systemic lupus erythematosis (SLE), or lupus, has been noted. Anti-IFN-α antibodies including rontalizumab have been under clinical study for the treatment of lupus. To better understand the rontalizumab mechanism of action and specificity, we determined the X-ray crystal structure of the Fab fragment of rontalizumab bound to human IFN-α2 at 3Å resolution and find substantial overlap of the antibody and IFNA2 epitopes on IFN-α2.  相似文献   

15.
The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/β barrier involve mutations in multiple H5N1 genes.  相似文献   

16.
17.
Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-β production in murine pDCs. This process is mediated by α4β1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-β induction. The SLAYGLR-mediated α4 integrin/IFN-β axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-β–expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-β axis may be implicated in a wide array of immune responses.  相似文献   

18.
The early systemic production of interferon (IFN)-αβ is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-αβ response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-αβ mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-αβ production, almost exclusively in splenic mDCs. Using knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate that the Ad-induced IFN-αβ response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-αβ and IL-6 in vivo by distinct pathways and confirm that IFN-αβ positively regulates the IL-6 response. Finally, by measuring TNF-α responses to LPS in Ad-infected wild type and IFN-αβR−/− mice, we show that IFN-αβ is the key mediator of Ad-induced hypersensitivity to LPS. These findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also produce a robust early IFN-αβ response, which is responsible for the bulk of IFN-αβ production induced by adenovirus in vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-αβ induction mechanisms and suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of adenoviral disease.  相似文献   

19.
Cell culture-produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of alpha interferon (IFN-α). Virus survival, genetic changes, fitness levels, and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, nonsynonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus nonsynonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shutoff host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of protein kinase R (PKR) and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.  相似文献   

20.
Fibrinogen binding to the integrin αIIbβ3 mediates platelet aggregation and spreading on fibrinogen-coated surfaces. However, in vivo αIIbβ3 activation and fibrinogen conversion to fibrin occur simultaneously, although the relative contributions of fibrinogen versus fibrin to αIIbβ3-mediated platelet functions are unknown. Here, we compared the interaction of αIIbβ3 with fibrin and fibrinogen to explore their differential effects. A microscopic bead coated with fibrinogen or monomeric fibrin produced by treating the immobilized fibrinogen with thrombin was captured by a laser beam and repeatedly brought into contact with surface-attached purified αIIbβ3. When αIIbβ3-ligand complexes were detected, the rupture forces were measured and displayed as force histograms. Monomeric fibrin displayed a higher probability of interacting with αIIbβ3 and a greater binding strength. αIIbβ3-fibrin interactions were also less sensitive to inhibition by abciximab and eptifibatide. Both fibrinogen- and fibrin-αIIbβ3 interactions were partially inhibited by RGD peptides, suggesting the existence of common RGD-containing binding motifs. This assumption was supported using the fibrin variants αD97E or αD574E with mutated RGD motifs. Fibrin made from a fibrinogen γ′/γ′ variant lacking the γC αIIbβ3-binding motif was more reactive with αIIbβ3 than the parent fibrinogen. These results demonstrate that fibrin is more reactive with αIIbβ3 than fibrinogen. Fibrin is also less sensitive to αIIbβ3 inhibitors, suggesting that fibrin and fibrinogen have distinct binding requirements. In particular, the maintenance of αIIbβ3 binding activity in the absence of the γC-dodecapeptide and the α-chain RGD sequences suggests that the αIIbβ3-binding sites in fibrin are not confined to its known γ-chain and RGD motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号