首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cochliobolus heterostrophus produces eight filiform ascospores per ascus, following meiosis and a postmeiotic mitosis. Early ascus development and nuclear divisions in C. heterostrophus resemble those of the prototypic Pyrenomycete Neurospora crassa. However, the two fungi differ in several important details owing to differences in ascus and ascospore shape, spindle pole body (SPB) behavior during spore delimitation, and ascospore development. In C. heterostrophus, the two spindles at meiosis II, and the four spindles at the postmeiotic mitosis are aligned irregularly, unlike the tandem or ladder rung-like orientation of spindles of N. crassa. Prior to ascospore delimitation, all eight nuclei reorient themselves and their SPB plaques migrate toward the base of the ascus. The SPB plaques facilitate demarcation of the lower end of each incipient ascospore. The filiform ascospores are uninucleate and unsegmented at inception but they become highly multinucleate, multisegmented, and helically coiled when mature. An account of ascus development, nuclear divisions, and ascospore delimitation and maturation is presented here and supported by a series of photomicrographs.  相似文献   

2.
Cochliobolus heterostrophus produces eight filiform ascospores per ascus, following meiosis and a postmeiotic mitosis. Early ascus development and nuclear divisions in C. heterostrophus resemble those of the prototypic Pyrenomycete Neurospora crassa. However, the two fungi differ in several important details owing to differences in ascus and ascospore shape, spindle pole body (SPB) behavior during spore delimitation, and ascospore development. In C. heterostrophus, the two spindles at meiosis II, and the four spindles at the postmeiotic mitosis are aligned irregularly, unlike the tandem or ladder rung-like orientation of spindles of N. crassa. Prior to ascospore delimitation, all eight nuclei reorient themselves and their SPB plaques migrate toward the base of the ascus. The SPB plaques facilitate demarcation of the lower end of each incipient ascospore. The filiform ascospores are uninucleate and unsegmented at inception but they become highly multinucleate, multisegmented, and helically coiled when mature. An account of ascus development, nuclear divisions, and ascospore delimitation and maturation is presented here and supported by a series of photomicrographs.  相似文献   

3.
Summary In the alkane yeast Saccharomycopsis lipolytica (formerly: Candida lipolytica) the variability in the ascospore number is caused by the absence of a correlation between the meiotic divisions and spore wall formation. In four spored yeasts, after meiosis II, a spore wall is formed around each of the four nuclei produced by meiosis II. However, in the most frequently occurring two spored asci of S. lipolytica, the two nuclei are already enveloped by the spore wall after meiosis I due to a delay of meiosis II. This division takes place within the spore during the maturation of the ascus. In this case germination of the binucleate ascospore is not preceded by a mitosis. It follows that the cells of the new haploid clones are mononucleate. In the three spored asci, which occur rarely, only one nucleus is surrounded by a spore wall after meiosis I; the other nucleus undergoes meosis II before the onset of spore wall formation. The result is one binucleate and two mononucleate spores. In the one spored asci the two meiotic divisions occur within the young ascospore, i.e. spore wall formation starts immediately after development of the ascus. These cytological observations were substantiated by genetic data, which in addition confirmed the prediction that binucleate spores may be heterokaryotic. This occurs when there is a postreduction of at least one of the genes by which the parents of the cross differ. This also explains the high frequency of prototrophs in the progeny on non-allelic auxotrophs since random spore isolates are made without distinguishing between mono-and binucleate spores. The possibility of analysing offspring of binucleate spores by tetrad analysis is discussed. These findings enable us to understand the life cycle of S. lipolytica in detail and we are now in a position to start concerted breeding for strain improvement especially with respect to single cell protein production.  相似文献   

4.
The cytology of ascus development in Nectria cinnabarina was investigated with the orceinsmear technique, from crozier formation to ascospore maturation. At prophase I synapsis occurs while the chromosomes are still contracted, and the nucleus passes through dictyotene, a diffuse stage rarely seen in plants. A haploid complement of five chromosomes has been precisely determined. The first two divisions in the ascus constitute meiosis, and the third (mitotic) is followed by ascospore delimitation. A fourth division takes place in the ascospore, which is subsequently divided by a septum into two uninucleate cells. Of all species of Nectria thus far investigated N. cinnabarina is the only species in which additional nuclear divisions in the ascus do occur, accounting for the multinucleate condition in the ascospore cells. The bearing that this distinctive nuclear condition has on phylogeny and evolution in the Hypocreales is discussed.  相似文献   

5.
The ultrastructural features of developing and mature ascospores were delineated after mating Arthroderma quadrifidum on pablum cereal agar. Incipient ascospores each contained a granulated nucleus bounded by a nuclear envelope while presumptive ascospore cytoplasm was bounded by a double membrane and resided in glycogen-rich epiplasm of the ascus. Mature ascospores contained nuclei and mitochondria while the ascus epiplasm still retained abundant inclusions. The ascospore wall demonstrated the presence of heterogeneous material between the plasmalemma and the outer spore membrane which appeared smooth.  相似文献   

6.
N B Raju  J F Leslie 《Génome》1992,35(5):815-826
Wild-collected strains of Neurospora crassa harbor recessive mutations that are expressed in the sexual phase when homozygous. Thirty-two representative mutants that produced barren perithecia were examined cytologically. Six of these mutants failed to form asci. Of the remaining 26, chromosome pairing was disturbed in 12 and meiosis was disturbed at pachytene or diplotene in 5. Seven mutants showed normal meiosis I but then diverged from the normal sequence, and two showed perithecial beak abnormalities. In many mutants, ascus development and nuclear divisions continued after the initial defect, albeit abnormally. Nuclear divisions were often delayed, essentially uncoupling them from other ascus events such as the formation of enlarged spindle pole body plaques, ascospore wall membranes, and spore delimitation. All 32 mutants were recessive and none showed obvious morphological abnormalities during vegetative growth. This phenotype contrasts sharply with that of numerous laboratory-induced ascus mutants, which are frequently expressed pleiotropically in the vegetative phase and several are dominant in the sexual phase.  相似文献   

7.
The fine structural characteristics of wild-type and sporulation-deficient mutants (spo) of yeast were examined. The results indicate that prospore wall formation, growth and closure, and nuclear budding and separation at meiosis represent parallel and normally coordinated developmental pathways of morphological change whose integration can be disrupted by gene mutation. At the restrictive temperature most cells of spo 1-1/spo 1-1 diploids terminate prior to the first spindle body duplication. In spo 2-1/spo 2-1 diploids the nucleus divides precociously both at meiosis I and at meiosis II. This aberrant behavior is followed by the formation of anucleate spores. In spo 3-1/spo 3-1 diploids development is normal until meiosis II. At this point nuclear segregation becomes retarded relative to ascospore delimitation. As a result much of the nuclear material fails to be incorporated into the ascospores.  相似文献   

8.
The intranuclear spindle of yeast has an electron-opaque body at each pole. These spindle plaques lie on the nuclear envelope. During mitosis the spindle elongates while the nuclear membranes remain intact. After equatorial constriction there are two daughted nuclei, each with one spindle plaque. The spindle plaque then duplicates so that two side-by-side plaques are produced. These move rapidly apart and rotate so that they bracket a stable 0.8 µm spindle. Later, during mitosis, this spindle elongates, etc. Yeast cells placed on sporulation medium soon enter meiosis. After 4 hr the spindle plaques of the more mature cells duplicate, producing a stable side-by-side arrangement. Subsequently the plaques move apart to bracket a 0.8 µm spindle which immediately starts to elongate. When this meiosis I spindle reaches its maximum length of 3–5 µm, each of the plaques at the poles of the spindle duplicates and the resulting side-by-side plaques increase in size. The nucleus does not divide. The large side-by-side plaques separate and bracket a short spindle of about 1 µm which elongates gradually to 2 or 3 µm. Thus there are two spindles within one nucleus at meiosis II. To the side of each of the four plaques a bulge forms on the nucleus. The four bulges enlarge while the original nucleus shrinks. These four developing ascospore nuclei are partially surrounded by cytoplasm and by a prospore wall which originates from the cytoplasmic side of the spindle plaque. Eventually the spore nuclei pinch off and the spore wall closes. In some of the larger yeast cells this development is completed after 8 hr on sporulation medium.  相似文献   

9.
Davidow LS  Goetsch L  Byers B 《Genetics》1980,94(3):581-595
Yeast cells subjected to a reversible thermal arrest of meiosis yielded progressively fewer spores per ascus as the arrest was extended. Dissection of two-spored asci by a newly developed method that prevents selection of false asci revealed that the spores were not a random sample of the haploid meiotic products. Most, if not all, pairs of spores contain nonsister products of the reductional division. Electron microscopic examination of the meiotic cells revealed the cytological basis for this bias. All four spindle pole bodies (SPBs) present at the second meiotic division normally gain a structural modification (the outer plaque) upon which the initiation of the prospore wall occurs. In the formation of a two-spored ascus, only one spindle pole body on each meiosis II spindle was so modified. These observations suggest that the morphogenesis of spores is regulated at meiosis II by limiting the number of SPBs gaining the outer plaque. The enhancement of spore yield upon addition of fresh medium suggests that this morphogenetic regulation responds more directly to nutrient deprivation arising during the thermal arrest, rather than to elevated temperature per se.  相似文献   

10.
Cytogenetic studies carried out in the tetraploid accession BRA001068 of Brachiaria decumbens, also known as cv. Basilisk, revealed an unusual pattern of microsporogenesis. The spindle in metaphase I and anaphase I became heavily stained with propionic carmine. In telophase I, the interzonal microtubules continued to be intensely stained, and during the phragmoplast formation the fibers were pushed to the cell wall, persisting until prophase II, even after cytokinesis. Due to its tetraploid condition, the accession presented many cells with precocious chromosome migration to the poles in metaphase I and laggards in anaphase I that gave rise to micronuclei in telophase I. While in other polyploid accessions of Brachiaria micronuclei remained in this condition until the second cytokinesis, the micronuclei in this accession organized their own spindle in the second division. In several microsporocytes, the micronuclei with their minispindle were divided further into microcytes by additional cytokinesis. Some curious planes of cytokinesis were found in some cells, with partitioning of cytoplasm into cells of irregular shape. The result consisted of a high frequency of abnormal products of meiosis. Quadrivalents were observed in diakinesis at low frequency, which suggests a segmental allotetraploid and the inability of both genomes to co-ordinate their activities, leading to multiple spindle and precocious cellularization. In spite of abnormal meiotic products reducing pollen fertility, seed production was normal. Enough normal pollen was available to fertilize the central-cell nucleus of the embryo sac and produce normal endosperm in this pseudogamous aposporous apomictic accession.  相似文献   

11.
In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1(+) is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.  相似文献   

12.
The three-dimensional organization of the microfilamental cytoskeleton of developingGasteria pollen was investigated by light microscopy using whole cells and fluorescently labelled phalloidin. Cells were not fixed chemically but their walls were permeabilized with dimethylsulphoxide and Nonidet P-40 at premicrospore stages or with dimethylsulphoxide, Nonidet P-40 and 4-methylmorpholinoxide-monohydrate at free-microspore and pollen stages to dissolve the intine.Four strikingly different microfilamentous configurations were distinguished. (i) Actin filaments were observed in the central cytoplasm throughout the successive stages of pollen development. The network was commonly composed of thin bundles ramifying throughout the cytoplasm at interphase stages but as thick bundles encaging the nucleus prior to the first and second meiotic division. (ii) In released microspores and pollen, F-actin filaments formed remarkably parallel arrays in the peripheral cytoplasm. (iii) In the first and second meiotic spindles there was an apparent localization of massive arrays of phalloidin-reactive material. Fluorescently labelled F-actin was present in kinetochore fibers and pole-to-pole fibers during metaphase and anaphase. (iv) At telophase, microfilaments radiated from the nuclear envelopes and after karyokinesis in the second meiotic division, F-actin was observed in phragmoplasts.We did not observe rhodamine-phalloidin-labelled filaments in the cytoplasm after cytochalasin-B treatment whereas F-actin persisted in the spindle. Incubation at 4° C did not influence the existence of cytoplasmic microfilaments whereas spindle filaments disappeared. This points to a close interdependence of spindle microfilaments and spindle tubules.Based on present data and earlier observations on the configuration of microtubules during pollen development in the same species (Van Lammeren et al., 1985, Planta165, 1-11) there appear to be apparent codistributions of F-actin and microtubules during various stages of male meiosis inGasteria verrucosa.Abbreviation DMSO dimethylsulfoxide  相似文献   

13.
Meiosis and ascospore development in the four-spored pseudohomothallic ascomycetes Neurospora tetrasperma, Gelasinospora tetrasperma, Podospora anserina, and P. fefraspora have been reexamined, highlighting differences that reflect independent origins of the four-spored condition in the different genera. In these species, as in the heterothallic eight-spored N. crassa, fusion of haploid nuclei is followed directly by meiosis and a postmeiotic mitosis. These divisions take place within a single unpartitioned giant cell, the ascus, which attains a length of >0.1 mm before nuclei are enclosed by ascospore walls. Two basically different modes underlie the delivery of opposite mating type nuclei into each of the four ascospores in the different genera. In N. tefrasperma on the one hand, the mating type locus is closely centromere-linked. Mating types therefore segregate at the first meiotic division. The second division spindles of N. tefrasperma overlap and are usually parallel to one another, in contrast to the their tandem arrangement in N. crassa. As a result, nonsister nuclei of opposite mating type are placed close together in each half-ascus and a pair is enclosed in each ascospore. In the Podospora and Gelasinospora species on the other hand, the second-division spindles are in tandem, with sister nuclei of opposite mating type associated as a pair in each half-ascus. It is established for P. anserina and inferred for P. fetraspora and G. fefrasperma that a single reciprocal crossing over almost always occurs in the mating type-centromere interval, ensuring that mating types segregate at the second meiotic division and that nuclei of opposite mating type are enclosed in each ascospore. Other differences are also seen that are less fundamental. Neurospora tetrasperma differs from the other species in the orientation of chromosomes and spindle pole body plaques at interphase (I.) Third-division spindles are oriented parallel to the ascus wall in Gelasinospora but across the ascus in Podospora and Neurospora. The two Podospora species differ from one another in nuclear behavior following mitosis in the young ascospores. In P. tefraspora, two of the four nuclei migrate into the tail cell, which degenerates, leaving one functional nucleus of each mating type. In P. anserina, by contrast, only one of the four nuclei moves into the tail cell, leaving the germinating ascospore with two functional nuclei of one mating type and one of the other. The pseudohomothallic condition with its heterokaryotic vegetative phase has significant consequences for both the individual organism and the breeding system. Genetic controls of development and recombination are complex. Inbreeding is not obligatory. © 1994 WiIey-Liss, Inc.  相似文献   

14.
Successful production of cloned animals derived from somatic cells has been achieved in sheep, cattle, goats, mice, pigs, rabbits, etc. But the efficiency of nuclear transfer is very low in all species. The present study was conducted to examine somatic nucleus remodelling and developmental ability in vitro of rabbit embryos by transferring somatic cells into enucleated germinal vesicle (GV), metaphase I (MI) or metaphase II (MII) oocytes. Microtubules were organized around condensed chromosomes after the nucleus had been transferred into any of the three types of cytoplasm. A bipolar spindle was formed in enucleated MII cytoplasm. Most of the nuclei failed to form a normal spindle within GV and MI cytoplasm. Some chromosomes scattered throughout the cytoplasm and some formed a monopolar spindle. Pseudopronucleus formation was observed in all three types of cytoplasm. Reconstructed embryos with MI and MII cytoplasm could develop to blastcysts. Nuclei in GV cytoplasm could develop only to the 4-cell stage. These results suggest that (1) GV material is important for nucleus remodelling after nuclear transfer, and (2) oocyte cytoplasm has the capacity to dedifferentiate somatic cells during oocyte maturation.  相似文献   

15.
K. Wells 《Protoplasma》1978,94(1-2):83-108
Summary The two division of meiosis that occur in the distal portion of the basidia ofPholiota terrestris were studied with light and electron microscopy. A diglobular spindle pole body (SPB), consisting of two globular elements and a connecting, electron-dense middle piece, is closely attached to the nuclear envelope of the fusion nucleus. During prometaphase I the globular elements separate and pass to the opposite poles as the chiastic spindle is formed. Evidently, the middle piece also separates with each resulting half persisting as an eccentric, electron-dense portion of the monoglobular SPB of meta-, ana-, and telophase nuclei. Also during prometaphase I, the nuclear envelope becomes discontinuous, especially in the lower region of the spindle. Light microscopic evidence of nucleolar extrusion at prometaphase I and II was observed. At metaphase I the SPB's move away from the condensed chromatic mass as the chromatids move asynchronously along the expanding spindle, evidently, due both to the elongation of the continuous fibers and the shortening of the chromosomal fibers. Two images resembling typical kinetochroes are illustrated in anaphase I nuclei, and others were seen during the study. At early telophase I and II the nuclear envelope is present laterally, is then formed in the interpolar region, and eventually appears between the chromatin and monoglobular SPB. A perforated ER cap, which is penetrated by microtubules, delimits the SPB. The nucleus enlarges, the chromatin becomes diffused except adjacent to the SPB, and the perinuclear ER becomes uniformly oriented around the nuclear envelope. At interphase I a diglobular SPB was not clearly documented. During interphase I the ER cap disappears but the perinuclear ER persists. Division II, with the exception of prophase, is essentially identical to division I. The postmeiotic, haploid nuclei migrate to the median or proximal region of the basidium. The diglobular SPB reappears. The meiotic apparatus inP. terrestris is considered to have the same fundamental features as those of plants and animals and in detail conforms to the pattern described in several light and electron microscopic studies of other Homobasidiomycetes.  相似文献   

16.
Ascospore development inCeratocystis fimbriata Ell. & Halst. commenced in an eight-nucleate ascus. A single vesicle formed along the periphery of the ascus from fragments of ascospore delimiting membranes, surrounded all eight nuclei and eventually invaginated, first forming pouches with open ends, then finally enclosing each of the eight nuclei in a separate sac, thus delimiting ascospores. Pairing of the ascospores followed and brim formation occurred at the contact area between two ascospores. Osmiophilic bodies contributed to the formation of brim-like appendages by fusing to the ascospore walls. Additional brims were observed at opposite ends of the ascospores giving them a double-brimmed appearance.Abbreviations AV ascus vesicle - DM delimiting membrane - EV electron translucent bodies - G granules - M mitochondria - N nucleus - OB osmiophilic bodies - PMV plasmamembrane vesicles - PW primary wall - SW secondary wall  相似文献   

17.
Summary Freeze substitution proved to be a valuable technique for studying the early stages of ascosporogenesis inAscodesmis nigricans. Our observations indicate that the ascus vesicle originated from the ascus plasma membrane. Invaginations of the plasma membrane produced ascus vesicle initials consisting of two closely spaced unit membranes. The appearance of the outer leaflet of each of these membranes was identical to that of the inner leaflet of the ascus plasma membrane. Apparent points of continuity between ascus vesicle initials and the plasma membrane were observed. Ascus vesicle initials accumulated in the ascus cytoplasm near the plasma membrane and then coalesced to form the ascus vesicle, a peripheral, cylinder-like structure consisting of two closely spaced unit membranes that extended from the ascus apex to the ascus base. The ascus vesicle then became invaginated in a number of regions and subsequently gave rise to eight sheet-like segments, or ascosporedelimiting membranes, that encircled uninucleate segments of cytoplasm forming ascospore initials. Like the ascus vesicle, each ascospore-delimiting membrane consisted of two closely spaced unit membranes, the inner of which became the ascospore plasma membrane. The ascospore wall then developed between the spore plasma membrane and the outer membrane. Many details of ascospore maturation were clearly visible in freeze substituted samples.  相似文献   

18.
Successful cloning by nuclear transfer has been reported with somatic or embryonic stem (ES) cell nucleus injection into enucleated mouse metaphase II oocytes. In this study, we enucleated mouse oocytes at the germinal vesicle (GV) or pro-metaphase I (pro-MI) stage and cultured the cytoplasm to the MII stage. Nuclei from cells of the R1 ES cell line were injected into both types of cytoplasm to evaluate developmental potential of resulting embryos compared to MII cytoplasmic injection. Immunocytochemical staining revealed that a spindle started to organize 30 min after nucleus injection into all three types of cytoplasm. A well-organized bipolar spindle resembling an MII spindle was present in both pro-MI and MII cytoplasm 1 h after injection with ES cells. However, in the mature GV cytoplasm, chromosomes were distributed throughout the cytoplasm and a much bigger spindle was formed. Pseudopronucleus formation was observed in pro-MI and MII cytoplasm after activation treatment. Although no pronucleus formation was found in GV cytoplasm, chromosomes segregated into two groups in response to activation. Only 8.1% of reconstructed embryos with pro-MI cytoplasm developed to the morula stage after culture in CZB medium. In contrast, 53.5% of embryos reconstructed with MII cytoplasm developed to the morula/blastocyst stage, and 5.3% of transferred embryos developed to term. These results indicate that GV material is essential for nucleus remodeling after nuclear transfer.  相似文献   

19.
Summary Observations of ascospore fromation in KMnO4-fixed Saccobolus kerverni apothecia with the electron microscope reveal the following sequence. Ascus formation is preceded by the development of croziers whose fine structure differs little from that of vegetative hyphae. Following fusion of the two nuclei in the ascus mother cell, the resultant ascus elongates, and two large vacuoles appear, first below and later above the fusion nucleus. These vacuoles soon occupy dominant positions at the tip and bottom of the ascus and assume a flocculent appearance. Nuclear blebbing occurs during meiosis, mitosis, and the subsequent spore delimitation process in the central cytoplasmic portion of the ascus. Each spore initial is surrounded by two membranes, the plasma and investing membranes, between which the spore wall is deposited in two layers, an inner primary wall and an outer secondary wall. Following primary wall deposition the spores clump; secondary wall deposition begins outside the primary wall at the places where the spores are contiguous. Interdigitation of these walls and disappearance of the investing membranes in the sutures lead to the envelopment of all eight ascospores in a common secondary wall. A flocculent material in the epiplasmic vacuoles aggregates around the mature spore balls.Based on a portion of a dissertation presented to the Faculty of the Graduate School of the University of Texas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

20.
Microsporogenesis in Zea mays, the meiotic reduction of diploid sporocytes to haploid microspores, proceeds through a well-defined developmental sequence. The ability to generate mutants that affect the process makes this an ideal system for elucidating the role of the cytoskeleton during plant development. We have used immunofluorescence microscopy to compare microtubule distribution in wild-type and mutant microsporocytes. During normal meiosis the distribution of microtubules follows a specific temporal and spatial pattern that reflects the polar nature of microspore formation. Perinuclear microtubule staining increases and the nucleus elongates in the future spindle axis during late prophase I. Metaphase I spindles with highly focused poles align along the long axis of the anther locule. Cytokinesis occurs perpendicular to the spindle axis. The second division axis shifts 90 degrees with respect to the first division plane, thereby yielding an isobilateral tetrad of microspores. Microtubule distribution patterns during meiosis suggest that a nuclear envelope-associated microtubule organizing center (MTOC) controls the organization of cytoplasmic microtubules and contributes to spindle formation. The meiotic mutant dv is defective in the transition from a prophase microtubule array to a metaphase spindle. Instead of converging to form focused poles, the metaphase spindle poles remain diffuse as in prometaphase. This defect correlates with several abnormalities in subsequent developmental events including the formation of multinucleate daughter cells, multiple microspindles during meiosis II, multiple phragmoplasts, polyads of microspores, and cytoplasmic microtubule foci. These results suggest that dv is a mutation that affects MTOC organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号