首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The activity of osteoclast-specific cysteine protease, cathepsin K, and matrix metalloproteases (MMPs) has been investigated in bone tissue of senescence-accelerated OXYS rats and in Wistar rats. At the age of 3 month (the period preceding manifestation of osteoporosis in OXYS rats) cathepsin K activity was higher whereas MMP activity was lower in Wistar rats. At the age of 14 months Wistar rats cathepsin K activity increased and MMP activity decreased. The age-related changes in bone cathepsin K and MMP activity of OXYS rats had opposite direction. Thus, despite of marked manifestations of osteoporosis previously found by us in OXYS rats (the decrease in mineralization density of the bone tissue and its resorption) no interstrain differences in cathepsin K and MMPs were found between Wistar and OXYS rats. Activity of a universal protease inhibitor, α2-macroglobulin, was higher in serum of 14-month old OXYS rats than in Wistar rats of the same age. The role of cathepsin K activation in resorption of bone tissue in the development of osteoporosis in senescence-accelerated OXYS rats is discussed.  相似文献   

2.
Cathepsin X, a recently discovered lysosomal cysteine protease, shares common structural features and activity properties with cysteine protease cathepsin B. Based on its widespread mRNA distribution in primary tumors and tumor cell lines, a redundant function in tumor progression has been proposed. In this study, we have shown that these two related proteases exhibit different profiles with respect to their protein distribution in cells and tissues and to their possible roles in malignancy. Protein level of cathepsin X did not differ significantly between matched pairs of lung tumor and adjacent lung tissue obtained from patients with lung cancer whereas that of cathepsin B was 9.6-fold higher in tumor compared to adjacent lung tissue. Immunohistochemical analysis of lung tumor cathepsin X revealed very faint staining in tumor cells but positive staining in infiltrated histiocytes, alveolar macrophages, bronchial epithelial cells, and alveolar type II cells. Cathepsin X stained positive also in CD68+ cells in germinal centers of secondary follicles in lymph nodes, corresponding to tingible body macrophages. Two cell lines with proven invasive behavior, MCF-10A neoT and MDA-MB 231, showed positive staining for cathepsin B, but negative for cathepsin X. We showed that the invasive potential of MCF-10A neoT cells can be impaired by specific inhibitor of cathepsin B but not by that of cathepsin X. Cathepsin X was found in large amounts in the pro-monocytic U-937 cell line, in monocytes and in dendritic cells, generated from monocytes in vitro. Our results show that cathepsin X is not involved in degradation of extracellular matrix, a proteolytic event leading to tumor cell invasion and metastasis. Its expression, restricted to immune cells suggests a role in phagocytosis and the regulation of immune response.  相似文献   

3.
Lysosomal proteases are actively involved into pathogenesis of malignant tumors. Impairments in the interaction between proteases and their inhibitors are implicated in the processes of tumor invasion and metastasis. Among proteases associated with malignant growth, cysteine cathepsins B and L and aspartic cathepsin D are considered to play the major role in the tumor development. The present study was designed to investigate the activity of cathepsins B, L, and D during the development and treatment of murine experimental leukemias and to determine correlation between these proteases and course of pathological process as well as efficiency of the chemotherapeutic treatment. P-388 leukemia was characterized by a more aggressive development and unfavorable prognosis than L1210/1 leukemia. In mice with P-388 leukemia the activity of lysosomal cathepsins B, D, and L in the tumor tissue, liver and spleen, as well as the activity of cathepsins B and L in serum were lower than activities of these enzymes in mice with L1210/1 leukemia. Changes in the activity of cathepsins in liver and spleen of leukemic mice reflected a level of aggressiveness of the tumor development and invasion of these organs with tumor cells. Treatment of these experimental leukemias resulted in the increase of cathepsin B, L and D activity in the tumor tissue, liver, spleen and the increase in cathepsin B and L activity in serum. The highest protease activity was detected in the groups of mice characterized by the highest inhibition of the tumor growth. These data demonstrate that lysosomal proteases are involved in the progression of murine experimental leukemias and elimination of tumor cells in the result of treatment. Thus, determination of the activity of cysteine and aspartic proteases can be used for evaluation of cancer malignancy, tumor sensitivity for chemotherapy and efficiency of treatment.  相似文献   

4.
Neutrophil elastase (NE) activity is increased in many diseases. Other families of proteases, including cathepsins and matrix metalloproteases (MMPs), are also present at elevated levels in similar disease conditions. We postulated that NE could induce expression of cathepsins and MMPs in human macrophages. NE exposure resulted in macrophages, producing significantly greater amounts of cathepsin B and latent and active MMP-2. Cathepsin B and MMP-2 activities were decreased in Pseudomonas-infected NE knockout mice compared with wild-type littermates. We also demonstrate that NE can activate NF-kappaB in macrophages, and inhibition of NF-kappaB resulted in a reduction of NE-induced cathepsin B and MMP-2. Also, inhibition of TLR-4 or transfection of macrophages with dominant-negative IL-1R-associated kinase-1 resulted in a reduction of NE-induced cathepsin B and MMP-2. This study describes for the first time a novel hierarchy among proteases whereby a serine protease up-regulates expression of MMPs and cathepsins. This has important implications for therapeutic intervention in protease-mediated diseases.  相似文献   

5.
The lysosomal protease cathepsin B has been implicated in a variety of pathologies including pancreatitis, tumor angiogenesis, and neuronal diseases. We used a tube formation assay to investigate the role of cathepsin B in angiogenesis. When cultured between two layers of collagen I, primary endothelial cells formed tubes in response to exogenously added VEGF. Overexpressing cathepsin B reduced the VEGF-dependent tube response, whereas pharmacologically or molecularly suppressing cathepsin B eliminated the dependence on exogenous VEGF. However, tube formation still required VEGF receptor activity, which suggested that endothelial cells generated VEGF. Indeed, VEGF mRNA and protein was detectable in cells treated with cathepsin B inhibitor, which correlated with a rise in the level of HIF-1alpha. In addition to boosting the level of proangiogenic factors, blocking cathepsin B activity reduced the amount of the antiangiogenic protein endostatin. Thus endothelial cells have the intrinsic capacity to generate pro- and antiangiogenic agents. These observations complement and expand our appreciation of how endothelial cell-derived proteases regulate angiogenesis.  相似文献   

6.
Equinatoxin II is a pore forming toxin produced by the sea anemone Actinia equina. It is able to kill very unspecifically most cell types by the membrane-perturbing action of an amphiphilic alpha-helix located at its N-terminal. A normally active N-terminal mutant, containing one single cys in the amphiphilic alpha-helix, becomes totally inactive when it is bound to avidin via a biotinylated linker. By choosing, as a linker, a peptide containing a tumor protease cleavage site, we were able to construct an enzymatically activable conjugate which should be selective for tumor cells. The introduced cleavage site was designed in order to be digested by both cathepsin B and matrix metalloproteases (MMPs). We confirmed that this conjugate could be activated in vitro by cathepsin B and MMPs. After having measured the enzymatic activity of fibrosarcoma and breast carcinoma cells, we analyzed the cytotoxic effect of the conjugate on the same lines and on human red blood cells (HRBC) as controls. We found that the conjugate was activated, at least in part, by the tumor cell lines used, whereas it was inactive on HRBC. That the activation process was dependent on the enzymatic action of cathepsin B and MMPs, was indicated by three lines of evidence: (1) binding occurred normally on all type of cells including HRBC which however were insensitive being devoid of enzymes; (2) the cytotoxic effect correlated with the amount of cathepsin B activity expressed by the cells; (3) conjugate activation was reduced by specific inhibitors of cathepsin B and MMPs. These results demonstrate the possibility of tumor cell killing by a pore-forming toxin conjugate specifically activated by tumor proteases.  相似文献   

7.
Interactions of stromal and tumor cells with the extracellular matrix may regulate expression of proteases including the lysosomal proteases cathepsins B and D. In the present study, we determined whether the expression of these two proteases in human breast fibroblasts was modulated by interactions with the extracellular matrix component, collagen I. Breast fibroblasts were isolated from non-malignant breast tissue as well as from tissue surrounding malignant human breast tumors. Growth of these fibroblasts on collagen I gels affected cell morphology, but not the intracellular localization of vesicles staining for cathepsin B or D. Cathepsins B and D levels (mRNA or intracellular protein) were not affected in fibroblasts growing on collagen I gels or plastic, nor was cathepsin D secreted from these cells. In contrast, protein expression and secretion of cathepsin B, primarily procathepsin B, was induced by growth on collagen I gels. The induced secretion appeared to be mediated by integrins binding to collagen I, as inhibitory antibodies against alpha(1), alpha(2), and beta(1) integrin subunits prevented procathepsin B secretion from fibroblasts grown on collagen. In addition, procathepsin B secretion was induced when cells were plated on beta(1) integrin antibodies. To our knowledge, this is the first examination of cathepsin B and D expression and localization in human breast fibroblasts and their regulation by a matrix protein. Secretion of the cysteine protease procathepsin B from breast fibroblasts may have physiological and pathological consequences, as proteases are required for normal development and for lactation of the mammary gland, yet can also initiate and accelerate the progression of breast cancer.  相似文献   

8.
Degradation of extracellular matrix proteins by proteases such as the cysteine protease cathepsin B is critical to malignant progression. We have established that procathepsin B presents on the surface of tumor cells through its interaction with the annexin II tetramer [Mai et al., J. Biol. Chem. 275 (2000),12806-12812]. Cathepsin B activity can also be detected on the tumor cell surface and in their culture medium. Interestingly, the annexin II tetramer also interacts with extracellular matrix proteins, such as collagen I, fibrin and tenascin-C. Both cathepsin B and tenascin-C are expressed at high levels in malignant tumors, especially at the invasive edges of tumors, and are implicated in tumor angiogenesis. In this study, we report that tenascin-C can be degraded by cathepsin B in vitro. We demonstrate by immunohistochemistry that both cathepsin B and tenascin-C are expressed highly in malignant anaplastic astrocytomas and glioblastomas as compared to normal brain tissues. Interestingly, cathepsin B and tenascin-C were also detected in association with tumor neovessels. We suggest that interactions between cathepsin B and tenascin-C are involved in the progression of gliomas including the angiogenesis that is a hallmark of anaplastic astrocytomas.  相似文献   

9.
The influence of the antitumor drugs, cyclophosphamide (CPA) and nitrosomethylurea (NMU) on the activity of lysosomal cysteine proteases cathepsin B and L in tumor tissue has been investigated using CPA-sensitive (LS) and CPA-resistant mouse lymphosarcomas (RLS). (These drugs exhibit high and low antitumor efficiency towards LS and RLS mouse lymphosarcomas, respectively). Regression or reduction in the growth rate of LS and RLS lymphosarcomas caused by CPA or NMU administration was accompanied by the increase in the activity of cysteine proteases cathepsin B and L in the tumor tissue. The increase of cathepsin B and L activity in tumor tissue correlated with the therapeutic effect of these drugs. Data obtained suggest that activity of cathepsin B and L in tumor tissue has a prognostic significance for the estimation of the effectiveness of antitumor therapy.  相似文献   

10.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

11.
Extracellular proteases were isolated from the cell-free culture supernatant of the oyster-pathogenic protozoan, Perkinsus marinus, by bacitracin–sepharose affinity chromatography. The purified protease fractions contained >75% of the protease activity initially loaded onto the column with very high specific activity that corresponded to 8–11-fold level of protease enrichment. The isolated proteases hydrolysed a variety of protein substrates including oyster plasma. All of the isolated P. marinus proteases belonged to the serine class of proteases. Inhibitor studies involving spectrophotometric assay and gelatin gel electrophoresis showed high levels of inhibition in the presence of the serine protease inhibitors PMSF, benzamidine and chymostatin, whereas inhibitors of cysteine, aspartic, and metalloproteases showed little or no inhibition. Spectrophotometric assays involving serine-specific peptide substrates further revealed that the isolated proteases belong to the class of chymotrypsin-like serine proteases. A 41.7 kDa monomeric, N-glycosylated, serine protease (designated Perkinsin) has been identified as the major P. marinus extracellular protease.  相似文献   

12.
 Serine proteases are the most abundant granule constituents of several major hematopoietic cell lineages. Due to their high abundance and their strict tissue specificity they have become important phenotypic cell markers used for studies of various aspects of hematopietic cell development. Using a polymerase chain reaction (PCR)-based strategy for the isolation of trypsin-related serine proteases, we were able to isolate cDNAs for two of the major neutrophil and monocyte serine proteases in the mouse, cathepsin G and mouse protease 3 (myeloblastin). The internal PCR fragments were used as probes to screen a mouse mast cell cDNA library and a cDNA library originating from a mouse monocytic cell line (WEHI-274.1). Full-length cDNAs for mouse cathepsin G and proteinase 3 were isolated and their complete sequences were determined. Northern blot analysis revealed expression of cathepsin G in immature cells of the monocyte macrophage lineage but also in the connective tissue mast cell line MTC. Proteinase 3 was expressed in several cell lines of myelo-monocytic origin and in one B-cell line, but not in any of the other cell lines tested. The isolation of cDNAs for mouse cathepsin G and mouse proteinase 3, together with the previous characterization of the gene for mouse N-elastase, and the entire or partial amino acid sequences for porcine azurocidine, equine N-elastase and proteinase 3, rat, dog, and rabbit cathepsin Gs in evolutionary relatively distantly related mammalian species, indicates that these four members of the serine protease family have been maintained for more than 100 million years of mammalian evolution. This latter finding indicates a strong evolutionary pressure to maintain specific immune functions associated with these neutrophil and monocyte proteases. All amino acid positions of major importance for the cleavage site selection have also been fully conserved between mouse and human proteinase 3 and a few minor changes have occurred between mouse and human cathepsin G. Received: 3 August 1996 / Revised: 24 February 1997  相似文献   

13.
Increased levels of both the cysteine protease, cathepsin L, and the serine protease, uPA (urokinase-type plasminogen activator), are present in solid tumors and are correlated with malignancy. uPA is released by tumor cells as an inactive single-chain proenzyme (pro-uPA) which has to be activated by proteolytic cleavage. We analyzed in detail the action of the cysteine protease, cathepsin L, on recombinant human pro-uPA. Enzymatic assays, SDS-PAGE and Western blot analysis revealed that cathepsin L is a potent activator of pro-uPA. As determined by N-terminal amino acid sequence analysis, activation of pro-uPA by cathepsin L is achieved by cleavage of the Lys158-Ile159 peptide bond, a common activation site of serine proteases such as plasmin and kallikrein. Similar to cathepsin B (Kobayashi et al., J. Biol. Chem. (1991) 266, 5147-5152) cleavage of pro-uPA by cathepsin L was most effective at acidic pH (molar ratio of cathepsin L to pro-uPA of 1:2,000). Nevertheless, even at pH 7.0, pro-uPA was activated by cathepsin L, although a 10-fold higher concentration of cathepsin L was required. As tumor cells may produce both pro-uPA and cathepsin L, implications for the activation of tumor cell-derived pro-uPA by cathepsin L may be considered. Different pathways of activation of pro-uPA in tumor tissues may coexist: (i) autocatalytic intrinsic activation of pro-uPA; (ii) activation by serine proteases (plasmin, kallikrein, Factor XIIa); and (iii) activation by cysteine proteases (cathepsin B and L).  相似文献   

14.
Serine proteases are important granule constituents in several of the major hematopoietic cell lineages. We present here the nucleotide sequence of the gene encoding mouse mast cell protease 8 (mMCP-8). mMCP-8 was initially isolated as a cDNA from a mouse mast cell line, but has recently been found to be expressed primarily by mouse basophils. mMCP-8 and its rat homologues, rMCP-8, -9, and -10, form a new group of mast cell/basophil proteases, which are more closely related to the T-cell granzymes and neutrophil cathepsin G than to the mast cell tryptases and chymases. A dot matrix comparison of the mMCP-8 gene with other closely related hematopoietic serine protease genes shows detectable homology only in the exonic regions of the genes. No indication for conservation in the promoter region or introns was observed. This latter finding indicates that the upstream regulatory region has evolved at a relatively high rate. However, despite the low degree of direct sequence conservation, no major differences in the sizes of introns or exons were observed between mMCP-8 and genes for the closest related hematopoietic serine proteases, the mouse T-cell granzymes and cathepsin G, indicating that after evolutionary separation from the T-cell granzymes and cathepsin G, the majority of mutations primarily involved single base pair substitutions or short insertions or deletions.  相似文献   

15.
Fish epidermal mucus and its components provide the first line of defense against pathogens. Little is known about the role of epidermal mucus enzymes in the innate immune system of fish species such as Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp(Cyprinus carpio), striped bass (Morone saxatilis), haddock, (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were analysed for the specific activities of various hydrolytic enzymes including lysozyme, alkaline phosphatase, cathepsin B and proteases and the enzyme levels were compared among the fish species. Of all the species hagfish mucus showed a high activity for lysozyme and proteases and koi carp mucus had the highest levels of alkaline phosphatase and cathepsin B. A wide variation in enzyme activities was observed among the seven species and also between species of same family such as Arctic char and brook trout (salmonidae), haddock and cod (gadidae). Only lysozyme levels showed a marked variation with salinity where seawater fish showed approximately two times higher lysozyme activity than freshwater-reared fish species. Characterization of proteases with specific inhibitors showed Arctic char, brook trout, haddock and cod having higher levels of serine over metalloproteases whereas koi carp and striped bass had higher levels of metalloproteases over serine proteases. In contrast, hagfish had almost equal proportion of both serine and metalloproteases. This study demonstrates variation in the level of hydrolytic enzymes in the epidermal mucus of fish. These results provide preliminary information for a better understanding of the role of epidermal mucus and its components in the fish innate immune system.  相似文献   

16.
Matrix metalloproteases (MMPs) are endogenous proteases that are responsible for degradation of extracellular matrix (ECM) proteins and cell surface antigens. The breakdown of ECM participates in the local invasion and distant metastases of malignant tumors. Canine transmissible venereal tumor (CTVT) is a naturally occurring contagious round cell neoplasm of dogs that affects mainly the external genitalia of both sexes. CTVT generally is a locally invasive tumor, but distant metastases also are common in puppies and immunocompromised dogs. We investigated the immune expressions and activities of MMP-2 and MMP-9 in CTVT. The presence of these enzymes in tumor cells and tissue homogenates was demonstrated by immunohistochemistry and western blotting. We used gelatin substrate zymography to evaluate the activities of MMP-2 and MMP-9 enzymes in tumor homogenates. We found that tumor cells expressed both MMP-2 and MMP-9. Electrophoretic bands corresponding to MMP-9 and MMP-2 were identified in immunoblots and clear bands that corresponded to the active forms of MMP-2 and MMP-9 also were detected in gelatin zymograms. Our study is the first detailed documentation of MMPs in CTVT.  相似文献   

17.
Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited.  相似文献   

18.
Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. Receptor-bound urokinase-type plasminogen activator (uPA) appears to play a key role in these events. uPA converts plasminogen into plasmin and thus mediates pericellular proteolysis during cell migration and tissue remodeling under physiological and pathophysiological conditions. uPA is secreted as an enzymatically inactive proenzyme (pro-uPA) by tumor cells and stroma cells. uPA exerts its proteolytic function on normal cells and tumor cells as an ectoenzyme after having bound to a high-affinity cell surface receptor. After binding, pro-uPA is activated by serine proteases (e.g. plasmin, trypsin or plasma kallikrein) and by the cysteine proteases cathepsin B or L, resp. Receptor-bound enzymatically active uPA converts plasminogen to plasmin which is bound to a different low-affinity receptor on tumor cells. Plasmin then degrades components of the tumor stroma (e.g. fibrin, fibronectin, proteoglycans, laminin) and may activate procollagenase type IV which degrades collagen type IV, a major part of the basement membrane. Hence receptor-bound uPA will promote plasminogen activation and thus the dissolution of the tumor matrix and the basement membrane which is a prerequisite for invasion and metastasis. Tissues of primary cancer and/or metastases of the breast, ovary, prostate, cervix uteri, bladder, lung and of the gastrointestinal tract contain elevated levels of uPA compared to benign tissues. In breast cancer uPA and PAI-1 antigen in tumor tissue extracts are independent prognostic factors for relapse-free and overall survival.  相似文献   

19.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

20.
Cystatins are a family of naturally occurring cysteine protease inhibitors, yet the target proteases and biological processes they regulate are poorly understood. Cystatin F is expressed selectively in immune cells and is the only cystatin to be synthesised as an inactive disulphide-linked dimeric precursor. Here, we show that a major target of cystatin F in different immune cell types is the aminopeptidase cathepsin C, which regulates the activation of effector serine proteases in T cells, natural killer cells, neutrophils and mast cells. Surprisingly, recombinant cystatin F was unable to inhibit cathepsin C in vitro even though overexpression of cystatin F suppressed cellular cathepsin C activity. We predicted, using structural models, that an N-terminal processing event would be necessary before cystatin F can engage cathepsin C and we show that the intracellular form of cystatin F indeed has a precise N-terminal truncation that creates a cathepsin C inhibitor. Thus, cystatin F is a latent protease inhibitor itself regulated by proteolysis in the endocytic pathway. By targeting cathepsin C, it may regulate diverse immune cell effector functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号