首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
The accumulation of glycine betaine to a high internal concentration by Escherichia coli cells in high osmolarity medium restores, within 1 h, a subnormal growth rate. The experimental results support the view that cell adaptation to high osmolarity involves a decrease in the initiation frequency of DNA replication via a stringent response; in contrast, glycine betaine transport and accumulation could suppress the stringent response within 1–2 min and restore a higher initiation frequency. High osmolarity also triggers the cells to lengthen, perhaps via an inhibition of cellular division; glycine betaine also reverses this process. It is inferred that turgor could control DNA replication and cell division in two separate ways. Glycine betaine action is not mediated by K+ ions as the internal level of K+ ions is not modified significantly following glycine betaine accumulation.  相似文献   

3.
BACKGROUND: The metabolic inhibitor rotenone inhibits hepatocellular proliferation and the incidence of liver cancer resulting from exposure to the PPARalpha agonist Wy-14,643, via unknown mechanisms. Since the absence of thyroid hormones diminishes hepatomegaly, an early biomarker for the hepatocarcinogenicity induced by PPARalpha agonists, this study was undertaken to investigate whether rotenone might interference with the ability of Wy-14,643 to alter the animal thyroid status. METHODS: Male B6C3F1 mice were given Wy-14,643 (100 ppm), rotenone (600 ppm) or a mixture of both, in the feed for 7 days. Bromodeoxyuridine (BrDU), marker of cell replication, was delivered through subcutaneously implanted osmotic mini-pumps. At the end of the experiment, sera were collected and corticosterone and thyroid hormone levels were measured by solid-phase radioimmunoassay kits. In addition, liver tissue samples were stained immunohistochemically for BrDU to determine percentages of labeled cells. Further, cell surface area was determined from images generated by a Zeiss Axioplan microscope equipped with a plan Neofluar x40 0.75 na objective. Tracings of individual hepatocyte perimeters were then analyzed and cell-surface areas were calculated using MicroMeasure FL-4000. RESULTS: Wy-14,643 caused a significant increase in liver weights, hepatocyte BrDU labeling index (LI), and hepatocyte surface area. In animals which received both Wy-14,643 and rotenone simultaneously, all of these effects were significantly less pronounced compared with mice that received Wy-14,643 alone. Rotenone alone decreased liver weights, LI and surface area. The Free Thyroid Index (FTI), which provides an accurate reflection of the animal's thyroid status, was 5.0 +/- 0.3 in control mice. In animals exposed to rotenone, these values decreased to 2.0 +/- 0.9, but in animals which received Wy-14,643, levels increased significantly to 7.7 +/- 0.9. FTI values decreased to 3.4 +/- 0.8 in mice receiving both rotenone and Wy-14,643. CONCLUSION: A strong correlation was observed between the animal thyroid status and both, hepatocyte proliferation (r2 = 0.62), and hepatocyte surface area (r2 = 0.83). These results support the hypothesis that the thyroid status of the animal plays a role in PPARalpha-induced hepatocellular proliferation and liver cell enlargement. Both these events are known to contribute to the expression of liver cancer in response to the activation of PPARalpha.  相似文献   

4.
Human exposure to methylating agents appears to be widespread, as indicated by the frequent occurrence of methylated DNA adducts in human DNA. The high incidence of methylated DNA adducts even in humans thought not to have suffered extensive exposure to environmental methylating agents implies that chemicals of endogenous origin, probably N-nitroso compounds such as the strongly carcinogenic N-nitrosodimethylamine (NDMA), may be primarily responsible for their formation and raises the question of the carcinogenic risks associated with such exposure. In addition to accumulation of DNA damage, other factors (such as induced cell proliferation) appear to be important in determining the probability of induction of mutation or cancer by NDMA, implying that high to low dose risk extrapolations should not be based on the assumption of dose- or even adduct-linearity. Comparative studies of the accumulation and repair of methylated adducts in humans and animals treated with methylating cytostatic drugs do not reveal significant species differences. Based on this and the dosimetry of adduct accumulation in rats chronically exposed to very low doses of NDMA, it is suggested that the exposure needed to account for the levels of adducts found in human DNA may be of the order of hundreds of micrograms NDMA (or equivalent) per day, a level of exposure which may well represent a significant carcinogenic hazard for man.  相似文献   

5.
Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O6-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N′-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced γH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.  相似文献   

6.
Bacterial constituents and products of the bacterial metabolism pass from the gut lumen to the portal vein and may influence the homeostasis of the liver. Our aim is to examine whether DNA synthesis of human hepatocyte cell lines is affected by constituents of Escherichia coli species as well as by intracolonic products of bacterial fermentation that reach the liver via the portal vein. Supernatant solutions and bacterial cell fractions (containing either whole dead bacteria, cell walls, cytosol or non-soluble intracellular components) of E. coli K12 and of E. coli species from rat fecal flora were separated by multi-step centrifugation, French press, and microfiltration. The supernatant solution and the cell fractions were incubated with a human hepatoma cell line (Hep-G2) and with a cell line derived from non-malignant human liver cells (Chang cells) for 24 h. The cells were labeled with tritiated thymidine before processing to autoradiography. DNA synthesis was estimated by the labeling index (LI%). DNA synthesis was also estimated following incubation of Hep-G2 cells with short chain fatty acids (acetic, propionic, butyric and succinic acid), acetaldehyde, and ammonium chloride. Epidermal growth factor and a water extract of Helicobacter pylori were used as references. The fractions of E. coli from rat fecal flora containing cytosol and non-soluble intracellular components significantly increased the labeling index in both Hep-G2 and Chang cells (p < 0.05). In addition, the supernatant solution significantly increased the LI in Chang cells (p < 0.05). Epidermal growth factor increased the LI of Hep-G2 cells dose-dependently (p < 0.05). Butyric acid reduced DNA synthesis at 10(-4) M (p < 0.05). The highest doses of acetaldehyde were cytotoxic and reduced the LI. Escherichia coli species contain mitogenic factors to human hepatocytes. The mitogen(s) are present in the supernatant solution, in the cytosol and in non-soluble intracellular components. Butyrate, which is a product of bacterial fermentation of colonic substrates inhibit DNA synthesis in the hepatocyte cell lines. Our findings suggest that soluble mitogen(s) that diffuse from the microorganism to the outer environment, intracellular bacterial constituents, and products of the bacterial metabolism that reach the liver via the portal vein may influence the cell kinetic steady-state of hepatic cells.  相似文献   

7.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

8.
The processes of hepatocyte multinucleation were studied in rats exposed to N-nitrosodimethylamine (NDMA). Using the immunohistochemical reaction to γ-tubulin, it was established that the number of cells containing three or more centrosomes increased 48 h after the NDMA injection. The formation of additional centrosomes in hepatocytes was shown to be based on the oxidative stress induced by NDMA metabolism with the participation of the cytochrome P450 superfamily. The administration of NDMA led to a sharp increase in the cytochrome P450 content in liver, especially 24 and 48 h (3.3 and 2.8 times, respectively) after the NDMA injection. The immunohistochemical reaction for cytochrome P4502E1 revealed an intensive staining of the cytoplasm of centrilobular hepatocytes 24 and 48 h after the NDMA action. In the same time period, a 1.1-2.0-fold increase occurs in the concentration of malonic dialdehyde (MDA) (a derivative of lipid peroxidation) and a 1.1-1.3-fold decrease in catalase activity (an enzyme of the cell antioxidative system). At a later time (72–120 h) after the NDMA action, the number of cells with three or more centrosomes, the intensity of cell cytoplasmic staining for cytochrome P450 2E1, and the concentrations of P450 and MDA in the liver decreased, whereas catalase activity increased. After 48 h of NDMA treatment, the incorporation of binuclear hepatocytes with various 3H-thymidines into nuclei occured, which indicates asynchronous DNA synthesis. The immunohistochemical reaction for pKi-67, nuclear protein that is a marker of cell proliferation, has established that the asynchronicity of nuclear proliferative activity in binuclear cells is not only characteristic of the S phase, but also of other cell cycle phases, including G1, G2, and M. Thus, the main mechanisms of hepatocyte multinucleation under the influence of NDMA are as follows: (1) increased hyperamplification of centrosomes as a consequence of oxidative stress and (2) asynchronous DNA synthesis in nuclei of binuclear hepatocytes with subsequent asynchronous acytokinetic mitosis.  相似文献   

9.
The DNA dynamics which mediate conversion of uni-nucleate trophozoite into quadrinucleate cyst in Entamoeba histolytica is not well understood. Here, we have addressed this question in Entamoeba invadens (a model system for encystation) through a detailed time course study of the differentiation process. We combined flow cytometric analysis with the change in rate of thymidine incorporation and the number of nuclei per cell. Our data shows that during encystment the cell population passes through three phases: (1) Early phase (0–8 h); of rapid DNA synthesis which may correspond to completion of ongoing DNA replication. Bi-nucleated cells increase with concomitant drop in uni-nucleated cells. (2) Commitment phase (8–24 h); in which DNA synthesis rate slows down. Possibly new rounds of replication are initiated which proceed slowly, followed by mitosis at 20 h. After this the number of bi- and uni-nucleated cells gradually decline and the tri- and tetra-nucleated cells begin to increase. (3) Consolidation phase (24–72 h); in which the rate of DNA synthesis shows a small increase till 32 h and then begins to decline. The G2/M peak reappears at 48 h, showing that more rounds of DNA replication may be getting completed, followed by nuclear division. By 72 h the encystment is virtually complete. The bi-nucleated stage could be an intermediate both in the conversion of trophozoite to cyst and back. Our study provides a comprehensive view of DNA dynamics during encystation and excystation of E. invadens.  相似文献   

10.
11.
Cell-suspension cultures of soybean (Glycine max (L.) Merr., line SB-1) have been used to study DNA replication. Cells or protoplasts incorporate either radioactive thymidine or 5-bromodeoxyuridine (BUdR) into DNA. The DNA has been extracted as large molecules which can be visualized by autoradiography. Nuclei were isolated and lysed on slides thus avoiding degradation of DNA by a cytoplasmic endonuclease. The autoradiograms demonstrated that DNA synthesis occurs at several sites tandemly arranged on single DNA molecules separated by center to center distances ranging from 10 to 30 m. Velocity sedimentations through alkaline gradients confirm the lengths of the replicated regions seen in autoradiograms. By using velocity sedimentation it also has been possible to demonstrate that replication proceeds by the synthesis of very small (4–6S) DNA intermediates which join to form the larger, replicon-size pieces seen in autoradiograms. Both small (4–6S) and large (20–30S) intermediates are observed in synchronized and exponential cultures. However, after synchronization with fluorodeoxyuridine (FUdR) the rate of DNA synthesis is reduced. Since the size of intermediates is not reduced by FUdR treatment, it is concluded that the slower rate of replication results from a reduction in the number of tandem replication units but not in the rate at which they are elongated. After FUdR treatment, the density analogue of thymidine, BUdR, can be substituted for almost all of the thymidine residue in DNA, resulting in a buoyant density increase (in CsCl) from 1.694 to 1.747 g/cm3. Using this density analogue it is possible to estimate the amount of template DNA attached to new replication sites. When this is done, it can be shown that synchronized cells initiate replication at about 5,000 different sites at the beginning of S. (Each such site will replicate to an average length of 20 m.) Use of BUdR also substantiates that at early stages of replication, very small replicated regions (<8S) exist which are separated by unreplicated segments of DNA which replicate at a later time. Most of these conclusions agree with the pattern of DNA replication established for animal cells. However, a major difference appears to be that after prolonged inhibition of soybean cell replication with FUdR, very small, as well as replicon-size intermediates accumulate when replication is restored. This indicates that regulation of replication in these cells may be different from animal cells.Abbreviations BUdR 5-Bromodeoxyuridine - FUdR 5-Fluorodeoxyuridine  相似文献   

12.
The root extract of Operculina turpethum (OTE) has been used as an anti-inflammatory, purgative, and hepato-protective agent. N-Nitrosodimethylamine (NDMA) is a potent hepatotoxin that induces fibrosis of the liver. In the present study, we examined the therapeutic effects of OTE root extract against NDMA-induced hepatotoxicity and clastogenicity in rats. Hepatic fibrosis was induced in adult male albino rats through serial intraperitoneal administrations of NDMA at a concentration of 10 mg/kg body weight on three consecutive days of each week over a period of three weeks. A group of rats received OTE orally in doses of 75, 150 and 200 mg/kg body weight at 5 h after the administration of NDMA. The controls and treated animals were sacrificed on days-7, 14 and 21 after the start of the administration of NDMA. The progression of hepatic fibrosis as well as the amelioration effect of OTE was evaluated through histopathologically as well as by immunohistochemical staining for the activation of hepatic stellate cells. Alterations in serum and liver biochemical parameters and LDH isoenzymes were also studied. Serial administration of NDMA resulted in well formed fibrosis in the liver and induction of micronuclei in the bone marrow cells. Staining of α-SMA demonstrated activated stellate cells from day-7 onwards which was dramatically increased on day-21. An elevation of micronuclei count, liver function enzymes, serum hydroxyproline levels and LDH isoenzymes 4 and 5 were also observed. All these changes were remarkably reduced in OTE administered animals and fibrogenesis was completely absent. Our results suggest that OTE has hepatoprotective and anti-clastogenic effects against NDMA-induced hepatic fibrosis. Therefore OTE may be used as a hepatoprotective agent against various liver diseases including toxic liver injury.  相似文献   

13.
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 μM to 200 μM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 μM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

14.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

15.
Regulatory mechanisms of betacyanin biosynthesis in suspension cultures of Phytolacca americana and anthocyanin in Vitis sp. were investigated in relation to cell division activity.Betacyanin biosynthesis in Phytolacca cells clearly shows a positive correlation with cell division, as the peak of betacyanin accumulation was observed at the log phase of batch cultures. Incorporation of radioactivity from labelled tyrosine into betacyanin also showed a peak at early log phase. Aphidicolin, an inhibitor of DNA synthesis, and propyzamide, an antimicrotubule drug, reduced betacyanin accumulation and inhibited the incorporation of radioactivity from labelled tyrosine into betacyanin at concentrations which were inhibitory to cell division. Both inhibitors reduced the incorporation of radioactivity from labelled tyrosine to 3,4-dihydroxyphenylalanine (DOPA), but the incorporation of labelled DOPA into betacyanin was not affected. These results suggest that the conversion of tyrosine to DOPA is coupled with cell division activity.In contrast, the anthocyanin accumulation in Vitis cells showed a negative correlation with cell division. Accumulation occurred at the stationary phase in batch cultures when cell division ceased. Aphidicolin or reduced phosphate concentration induced a substantial increase in anthocyanin accumulation as well as the inhibition of cell division. Chalcone synthase (CHS) activity increased at the time of anthocyanin accumulation. Northern blotting analysis indicated that changes in CHS mRNA levels corresponded to similar changes in enzymatic activity. The pool size of endogenous phenylalanine was low during active cell division, but increased before anthocyanin began to accumulate and concomitantly with increasing levels of CHS mRNA. Exogenous supply of phenylalanine at the time of low endogenous levels induced the elevation of CHS mRNA and anthocyanin accumulation. These results indicate that the elevation of endogenous phenylalanine levels, when cell division ceases, may cause the increase in CHS mRNA levels, resulting in increased CHS activity and subsequently in anthocyanin accumulation in Vitis suspension cultures.Abbreviations CHS chalcone synthase - CHFI chalcone flavanone isomerase - DOPA 3,4-dihydroxyphenylalanine - PAL phenylalanine ammonia lyase  相似文献   

16.
Perturbed DNA replication either activates a cell cycle checkpoint, which halts DNA replication, or decreases the rate of DNA synthesis without activating a checkpoint. Here we report that at low doses, replication inhibitors did not activate a cell cycle checkpoint, but they did activate a process that required functional Bloom's syndrome-associated (BLM) helicase, Mus81 nuclease and ataxia telangiectasia mutated and Rad3-related (ATR) kinase to induce transient double-stranded DNA breaks. The induction of transient DNA breaks was accompanied by dissociation of proliferating cell nuclear antigen (PCNA) and DNA polymerase α from replication forks. In cells with functional BLM, Mus81 and ATR, the transient breaks were promptly repaired and DNA continued to replicate at a slow pace in the presence of replication inhibitors. In cells that lacked BLM, Mus81, or ATR, transient breaks did not form, DNA replication did not resume, and exposure to low doses of replication inhibitors was toxic. These observations suggest that BLM helicase, ATR kinase, and Mus81 nuclease are required to convert perturbed replication forks to DNA breaks when cells encounter conditions that decelerate DNA replication, thereby leading to the rapid repair of those breaks and resumption of DNA replication without incurring DNA damage and without activating a cell cycle checkpoint.  相似文献   

17.
《FEBS letters》1986,196(1):171-174
Pea seedlings grown for 5 days in the dark were treated with red light for 5 min and grown for 2 more days in the dark. Effects of the red light on chloroplast DNA levels in the pea leaves were examined using probe DNA of the chloroplast-coded large subunit and nuclear-coded small subunit of ribulosebisphosphate carboxylase/oxygenase. The gene dosage of the large subunit, but not of the small subunit, was increased by red light. The increase was inhibited by subsequent far-red light treatment. These results indicate that accumulation of chloroplast DNA in the cell is mediated by phytochrome. Probably the replication of chloroplast DNA is mediated by phytochrome.  相似文献   

18.
DNA damage and repair in kidney and liver of mouse fetuses exposed to selected doses of N-nitrosodimethylamine (NDMA) (CAS No. 62.75.9) were studied using the alkaline elution technique. CD1 female mice (15 days pregnant) were treated i.p. with 2 and 10 mg/kg b.w. of NDMA; a slight increase in DNA damage was observed in their fetuses compared to untreated controls. A 2-fold higher extent of DNA damage was induced when mice were treated by intrafetal injections of a rat S9 activating fraction (S9) immediately before exposure to the same dose of NDMA by transplacental means. The DNA-strand breaks disappeared as a function of time in animals treated with NDMA alone. In contrast, a significant persistence of DNA damage was detected in the liver and lung of fetuses which were treated with S9 and NDMA in sequence. These experiments demonstrate the metabolic immaturity of unborn mice as far as the carcinogenic activation of NDMA is concerned and show the high susceptibility of fetal tissues to DNA-damaging agents. The alkaline elution applied in vivo by the transplacental route combined with the intrafetal injection of an exogenous activating microsomal fraction allow to extend our knowledge on the interaction of metabolism-dependent chemicals with fetal tissues.  相似文献   

19.
E. Mösinger  K. Bolze  P. Schopfer 《Planta》1982,155(2):133-139
In order to clarify the relationship between photomorphogenesis and DNA replication we investigated the effect of continuous far-red or white light on the synthesis of DNA in the cotyledons and the hypocotyl of mustard seedlings between 36 and 108 h after sowing. The total DNA content of the cotyledons (about 2.2 pg cell-1) did not significantly change during this period although long-term labeling experiments revealed newly synthesized DNA of nuclear, plastid, and mitochondrial origin. Light had no detectable effect on total DNA content and on the labeling of either DNA fraction. Histoautoradiography indicated that nuclear DNA synthesis was exclusively localized in dividing stomatal cells and in sieve tube companion cells undergoing endopolyploidization. The DNA content of the hypocotyl increased continuously but likewise showed no detectable effect of light. It is concluded that cell growth and differentiation during photomorphogenesis is independent of DNA synthesis.Abbreviation DABA 3,5-diaminobenzoic acid  相似文献   

20.
In the green unicellular alga Chlamydomonas eugametos, cellular division is readily synchronized by light/dark cycles. Under these conditions, light initiates photosynthetic growth in daughter cells and begins the G1 phase. Genes whose expression is regulated upon illumination are likely to be important mechanisms controlling cell proliferation. To identify some of those genes, two cDNA libraries were prepared with poly(A)+ extracted from cells either stimulated with light for 1 h or held in darkness (quiescent cells) during the same period. To restrict our analysis to those genes that are part of the primary response, cells were incubated in presence of cycloheximide. Differential screening of approximately 40 000 clones in each library revealed 44 clones which hybridize preferentially with a [32P] cDNA probe derived from RNA of light-stimulated cells and 15 clones which react selectively with a [32P] cDNA probe synthesized from poly(A)+ RNA of quiescent cells. Cross-hybridization of these clones identified 4 independent sequences in the light-induced (LI) collection and 2 in the uninduced (LR) library. Four of these cDNAs correspond to mRNAs that are positively or negatively regulated upon activation of photosynthesis. One clone represents a mRNA that accumulates transitorily at both transitions. Finally, LI818 cDNA identifies a new chlorophyll a/b-binding (cab) gene family whose mRNA accumulation is controlled by light and a circadian oscillator. The endogenous timing system controls LI818 mRNA accumulation so that it precedes the onset of illumination by a few hours. On the other hand, light affects LI818 mRNA levels independently of active photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号