首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed green fluorescent protein (GFP)-expressing balancer chromosomes for each of the three major chromosomes of Drosophila melanogaster. Expression of GFP in these chromosomes is driven indirectly by a Kruppel (Kr) promoter, via the yeast GAL4-UAS regulatory system. GFP fluorescence can be seen in embryos as early as the germ band extension stage, and can also be seen in larvae, pupae, and adults. We show the patterns of GFP expression of these balancers and demonstrate the use of the balancers to identify homozygous progeny.  相似文献   

2.
《Fly》2013,7(4):369-370
We generated FM7a and CyO balancer chromosomes bearing a Tubby1 (Tb1) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit a phenotype undistinguishable from that elicited by the Tb1 mutation associated with the TM6B balancer. We tested two of these Tb-bearing balancers (FM7-TbA and CyO-TbA) for more than 30 generations and found that the Tb1 transgene they carry is stable. Thus, these new Tb-tagged balancers are particularly useful for balancing lethal mutations and distinguish homozygous mutant larvae from their heterozygous siblings.  相似文献   

3.
This study reports on exceptional males which are obtained by using Drosophila melanogaster mothers carrying the balancers In(1)FM6 or In(1)FM7 as one of their X chromosomes. The phenomenon was first observed in interspecific crosses between D. melanogaster females and males of its closest relatives which normally produce unisexual female hybrid progeny. Whereas hybrid sons from these crosses die as third instar larvae, the presence of the particular X balancers in the mother allows a low percentage of sons to survive. Similar sterile males are also observed among non-hybrid flies. Data are presented which suggest that the males thus generated could be hyperploid for part of their X chromosome as a result of a meiotic event in their mothers or else they could start life as female zygotes and change sex through a mitotic event at an early stage.  相似文献   

4.
Two new genetic balancers for chromosome II of Caenorhabditis elegans were isolated and characterized. mIn1 was shown to be an inversion of a large central portion of the chromosome, extending from lin-31 to rol-1, that includes most of the genes on the chromosome. It balances a region to the left of the gene cluster that was previously not covered by any of the available balancers. mIn1 recombines efficiently with the normal chromosome II in regions outside the rearrangement at both ends, and appears to enhance recombination frequency adjacent to the inversion breakpoints. Eight variant strains of mIn1 were isolated, including forms that carry recessive morphological or lethal markers, an unmarked form, and one that carries an integrated transgene that confers a semi-dominant green fluorescent protein (GFP) phenotype. This set of variants makes mIn1 useful for a wide variety of applications. The second balancer, mT1, was shown to be a II;III translocation that suppresses recombination on the right arms of chromosomes II and III. It balances chromosome II from the region between bli-2 and dpy-10 to the right end of the chromosome, and chromosome III from the region between daf-2 and unc-93 to the right end. These rearrangements provide the means to stabilize efficiently most of the genes on chromosome II, and may be useful for studies of chromosome pairing and recombination.  相似文献   

5.
We used the Tc1/mariner family transposable element Sleeping Beauty (SB) for transgenesis and long-term expression studies in the zebrafish (Danio rerio), a popular organism for clinical disease, vertebrate patterning, and cell biology applications. SB transposase enhanced the transgenesis and expression rate sixfold (from 5 to 31%) and more than doubled the total number of tagged chromosomes over standard, plasmid injection-based transgenesis methods. Molecular analysis of these loci demonstrated a precise integration of these elements into recipient chromosomes with genetic footprints diagnostic of transposition. GFP expression from transposase-mediated integrants was Mendelian through the eighth generation. A blue-shifted GFP variant (BFP) and a red fluorescent protein (DsRed) were also useful transgenesis markers, indicating that multiple reporters are practical for use with SB in zebrafish. We showed that SB is suitable for tissue-specific transgene applications using an abbreviated gamma-crystallin GFP cassette. Finally, we describe a general utility transposon vector for chromosomal engineering and molecular genetics experiments in zebrafish. Together, these data indicate that SB is an efficient tool for transgenesis and expression in zebrafish, and that the transposon will be useful for gene expression in cell biology applications as well as an insertional mutagen for gene discovery during development.  相似文献   

6.
We report here the construction of Tubby-RFP balancers for the X, 2nd and 3rd chromosomes of Drosophila melanogaster. The insertion of a 2xTb-RFP transgene on the FM7c, CyO, and TM3 balancer chromosomes introduces two easily scorable, dominant, developmental markers. The strong Tb phenotype is visible to the naked eye at the larval L2, L3, and pupal stages. The RFP associated with the cuticle is easily detected at all stages from late embryo to adult with the use of a fluorescence stereomicroscope. The FM7c Bar 2xTb-RFP, CyO Cy 2xTb-RFP, and TM3 Sb 2xTb-RFP balancers will greatly facilitate the analysis of lethals and other developmental mutants in L2/L3 larvae and pupae, but also provide coverage of other stages beginning in late embryogenesis through to the adult.  相似文献   

7.
We generated FM7a and CyO balancer chromosomes bearing a Tubby1 (Tb1) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit a phenotype undistinguishable from that elicited by the Tb1 mutation associated with the TM6B balancer. We tested two of these Tb-bearing balancers (FM7-TbA and CyO-TbA) for more than 30 generations and found that the Tb1 transgene they carry is stable. Thus, these new Tb-tagged balancers are particularly useful for balancing lethal mutations and distinguish homozygous mutant larvae from their heterozygous siblings.  相似文献   

8.
The paired box gene 3 (Pax3) is expressed during pigment cell development. We tested whether the targeted allele Pax3(GFP) can be used as a reporter gene for pigment cells in the mouse. We found that enhanced green fluorescent protein (GFP) can be seen readily in every melanoblast and melanocyte in the epidermis and hair follicles of Pax3(GFP/+) heterozygotes. The GFP was detected at all differentiation stages, including melanocyte stem cells. In the dermis, Schwann cells and nestin-positive cells of the piloneural collars resembling the nestin-positive hair follicle multipotent stem cells exhibited a weaker GFP signal. Pigment cells could be purified by fluorescent activated cell sorting and grown in vitro without feeder cells, giving pure cultures of melanocytes. The Schwann cells and nestin-positive cells of the piloneural collars were FACS-isolated based on their weak expression of GFP. Thus Pax3(GFP) can discriminate distinct populations of cells in the skin.  相似文献   

9.
Elimination or reduction of inbreeding depression by natural selection at the contributing loci (purging) has been hypothesized to effectively mitigate the negative effects of inbreeding in small isolated populations. This may, however, only be valid when the environmental conditions are relatively constant. We tested this assumption using Drosophila melanogaster as a model organism. By means of chromosome balancers, chromosomes were sampled from a wild population and their viability was estimated in both homozygous and heterozygous conditions in a favourable environment. Around 50% of the chromosomes were found to carry a lethal or sublethal mutation, which upon inbreeding would cause a considerable amount of inbreeding depression. These detrimentals were artificially purged by selecting only chromosomes that in homozygous condition had a viability comparable to that of the heterozygotes (quasi-normals), thereby removing most deleterious recessive alleles. Next, these quasi-normals were tested both for egg-to-adult viability and for total fitness under different environmental stress conditions: high-temperature stress, DDT stress, ethanol stress, and crowding. Under these altered stressful conditions, particularly for high temperature and DDT, novel recessive deleterious effects were expressed that were not apparent under control conditions. Some of these chromosomes were even found to carry lethal or near-lethal mutations under stress. Compared with heterozygotes, homozygotes showed on average 25% additional reduction in total fitness. Our results show that, except for mutations that affect fitness under all environmental conditions, inbreeding depression may be due to different loci in different environments. Hence purging of deleterious recessive alleles can be effective only for the particular environment in which the purging occurred, because additional load will become expressed under changing environmental conditions. These results not only indicate that inbreeding depression is environment dependent, but also that inbreeding depression may become more severe under changing stressful conditions. These observations have significant consequences for conservation biology.  相似文献   

10.
Chromosome Rearrangements in CAENORHABDITIS ELEGANS   总被引:1,自引:0,他引:1  
A method for selecting unlinked duplications of a part of the X chromosome of C. elegans is described. Five such duplications have been identified. One of them, Dp (X;V)1, is translocated to linkage group V, where it suppresses crossing over along the left half of linkage group V. Dp(X;V)1 homozygotes grow slowly and are sterile. The other four duplications are associated with chromosome fragments, as observed cytologically by fluorescence microscopy, and tend to be lost. Their frequency of loss is higher in strains homozygous for a mutation that promotes nondisjunction of X chromosomes. The recombination frequencies between two of these duplications and the X have been measured: the frequencies are at least 50 times less than for X-X recombination in the same region. The duplications may prove useful as balancers of recessive lethal mutations.  相似文献   

11.
Medina PM  Swick LL  Andersen R  Blalock Z  Brenman JE 《Genetics》2006,172(4):2325-2335
Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin::GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin::GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment.  相似文献   

12.
13.
14.
Klysik J  Dinh C  Bradley A 《Genomics》2004,83(2):303-310
Segmental inversions causing recombination suppression are an essential feature of balancer chromosomes. Meiotic crossing over between homologous chromosomes within an inversion interval will lead to nonviable gametes, while gametes generated from recombination events elsewhere on the chromosome will be unaffected. This apparent recombination suppression has been widely exploited in genetic studies in Drosophila to maintain and analyze stocks carrying recessive lethal mutations. Balancers are particularly useful in mutagenesis screens since they help to establish the approximate genomic location of alleles of genes causing phenotypes. Using the Cre-loxP recombination system, we have constructed two mouse balancer chromosomes carrying 8- and 30-cM inversions between Wnt3 and D11Mit69 and between Trp53 and EgfR loci, respectively. The Wnt3-D11Mit69 inversion mutates the Wnt3 locus and is therefore homozygous lethal. The Trp53-EgfR inversion is homozygous viable, since the EgfR locus is intact and mutations in p53 are homozygous viable. A dominantly acting K14-agouti minigene tags both rearrangements, which enables these balancer chromosomes to be visibly tracked in mouse stocks. With the addition of these balancers to the previously reported Trp53-Wnt3 balancer, most of mouse chromosome 11 is now available in balancer stocks.  相似文献   

15.
We report the characterization of an Otx2 and an Otx5 orthologue in the urodele Pleurodeles waltl. These two genes, termed PwOtx2 and PwOtx5, share highly conserved expression domains with their gnathostome counterparts at tailbud stages, like the developing forebrain ( PwOtx2), or the embryonic eye and epiphysis ( PwOtx5). As in Xenopus laevis, both are also transcribed in the dorsal lip of the blastopore during gastrulation and in anterior parts of the neural plate during neurulation. In addition, PwOtx5 displays a prominent expression in the developing balancers and the lateral non-neural ectoderm during neurulation, from which they derive. By contrast, PwOtx2 expression remains undetectable in the balancers and their presumptive territory. These data suggest that PwOtx5, but not PwOtx2, may be involved in the differentiation and early specification of balancers. Comparisons of Otx5 expression patterns in P. waltland X. laevis embryos suggest that, as previously shown for Otx2, changes in the regulatory mechanisms controlling Otx5 early expression in the non-neural ectoderm may occur frequently among amphibians. These changes may be related to the rise of cement glands in anurans and of balancers in urodeles. This hypothesis could account for some similarities between the two organs, but does not support a homology relationship between them.  相似文献   

16.
We established and characterized a murine mesenchymal stem cell line from the bone marrow of a transgenic C57BL mouse that ubiquitously expressed green fluorescent protein (GFP). Immunostaining revealed the presence of several markers common for mesenchymal stem cells (MSCs). The cells expressed specific fibroblast proteins, such as smooth muscle actin, which is localized in stress fibrils, and vimentin, a major protein of intermediate filaments in connective tissue cells. These proteins are responsible for the ability to differentiate into adipocytes or osteoblasts under appropriate conditions. The MSC karyotype was unstable. At the 6th passage cells, were aneuploid and genetically heterogeneous. The number of chromosomes ranged from near 2n to 8n. 80% of cells had chromosome numbers between 50 and 85 without a well-defined modal class. Differential G-staining of metaphase spreads showed variability in the copy numbers of individual chromosomes and presence of random chromosome rearrangements, such as ectopic associations of nonhomologous chromosomes. All cells analyzed contained a single dicentric marker chromosome. Some cells also had mini-chromosomes regarded as indicators of gene amplification. We suppose that the karyotypic instability of MSCs that express GFP is provoked by the insertion of foreign GFP transgenes into the murine genome. These cells could be useful for the study of genomic alterations during the spontaneous oncogenic transformation of stem cells.  相似文献   

17.
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.  相似文献   

18.
We have inserted a histone H1-GFP fusion gene adjacent to three loci on different chromosomes of Neurospora crassa and made mating pairs in which a wild type version of GFP is crossed to one with a mutation in the 5' end of GFP. The loci are his-3, am and his-5, chosen because recombination mechanisms appear to differ between his-3 and am, and because crossing over adjacent to his-5, like his-3, is regulated by rec-2. At his-3, the frequencies of crossing over between GFP and the centromere and of conversion of 5'GFP to GFP(+) are comparable to those obtained by classical recombination assays, as is the effect of rec-2 on these frequencies, suggesting that our system does not alter the process of recombination. At each locus we have obtained sufficient data, on both gene conversion and crossing over, to be able to assess the effect of deletion of any gene involved in recombination. In addition, crosses between a GFP(+) strain and one with normal sequence at all three loci have been used to measure the interval to the centromere and to show that GFP experiences gene conversion with this system. Since any gene expressed in meiosis is silenced in Neurospora if hemizygous, any of our GFP(+) strains can be used as a quick screen to determine if a gene deleted by the Neurospora Genome Project is involved in crossing over or gene conversion.  相似文献   

19.
Chromosomal nonhistone proteins have important roles in mitotic chromosome formation and dynamics. In order to identify novel abundant proteins with a potential involvement in these processes, we initiated a proteomic screen of the chromosome scaffold fraction. This screen identified 79 proteins, 30 of which had not previously been described as components of mitotic chromosomes. Furthermore, half of these proteins had no documented function. We analyzed the cell-cycle dependent distribution of three uncharacterized proteins by expressing them as green fluorescent protein (GFP) fusions and showed that they associate with mitotic chromosomes in vivo. One of the proteins, nuclear protein p30, is a novel component of the inner centromere. Over-expression experiments indicated that p30 may have an active role in the formation of centromeric heterochromatin.  相似文献   

20.
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号