首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

2.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

3.
One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.  相似文献   

4.
During membrane traffic, transport carriers are first tethered to the target membrane prior to undergoing fusion. Mechanisms exist to connect tethering with fusion, but in most cases, the details remain poorly understood. GM130 is a member of the golgin family of coiled-coil proteins tat is involved in membrane tethering at the endoplasmic reticulum (ER) to Golgi intermediate compartment and cis-Golgi. Here, we demonstrate that GM130 interacts with syntaxin 5, a t-SNARE also localized to the early secretory pathway. Binding to syntaxin 5 is specific, direct, and mediated by the membrane-proximal region of GM130. Interestingly, interaction with syntaxin 5 is inhibited by the binding of the vesicle docking protein p115 to a distal binding site in GM130. The interaction between GM130 and the small GTPase Rab1 is also inhibited by p115 binding. Our findings suggest a mechanism for coupling membrane tethering and fusion at the ER to Golgi intermediate compartment and cis-Golgi, with GM130 playing a central role in linking these processes. Consistent with this hypothesis, we find that depletion of GM130 by RNA interference slows the rate of ER to Golgi trafficking in vivo. The interactions of GM130 with syntaxin 5 and Rab1 are also regulated by mitotic phosphorylation, which is likely to contribute to the inhibition of ER to Golgi trafficking that occurs when mammalian cells enter mitosis.  相似文献   

5.
The cytosolic phosphoprotein p115 is required for ER to Golgi traffic and for Golgi reassembly after mitosis. In cells, p115 is localized to ER exit sites, ER-Golgi Intermediate Compartment (ERGIC) and the Golgi, and cycles between these compartments. P115 is phosphorylated on serine 942, and this modification appears to control p115 association with membranes. P115 is likely to function by reversibly interacting with effector proteins, and in the Golgi, two proteins, GM130 and giantin, have been shown to bind p115. The GM130-p115 and the giantin-p115 interactions are enhanced by p115 phosphorylation. Phosphorylation appears to be essential for p115 function, since substitutions of serine 942 abolish p115 ability to sustain cisternal reformation in an in vitro assay reconstituting Golgi reassembly after mitosis. Here, we explored how phosphorylation of p115 affects its intracellular targeting to distinct cellular compartments, and its function in secretory traffic. We generated phosphorylation mutants of p115 and tested their ability to target to ER exit sites, ERGIC and the Golgi. In addition, we explored whether expression of the mutants causes disruption of Golgi structure and perturbs ER-Golgi traffic of a VSV-G cargo protein.  相似文献   

6.
The Golgi apparatus occupies a central position within the secretory pathway, but the molecular mechanisms responsible for its assembly and organization remain poorly understood. We report here the identification of zinc finger protein-like 1 (ZFPL1) as a novel structural component of the Golgi apparatus. ZFPL1 is a conserved and widely expressed integral membrane protein with two predicted zinc fingers at the N-terminus, the second of which is a likely ring domain. ZFPL1 directly interacts with the cis-Golgi matrix protein GM130. Depletion of ZFPL1 results in the accumulation of cis-Golgi matrix proteins in the intermediate compartment (IC) and the tubulation of cis-Golgi and IC membranes. Loss of ZFPL1 function also impairs cis-Golgi assembly following brefeldin A washout and slows the rate of cargo trafficking into the Golgi apparatus. Effects upon Golgi matrix protein localization and cis-Golgi structure can be rescued by wild-type ZFPL1 but not mutants defective in GM130 binding. Together, these data suggest that ZFPL1 has an important function in maintaining the integrity of the cis-Golgi and that it does so through interactions with GM130.  相似文献   

7.
F A Barr  N Nakamura    G Warren 《The EMBO journal》1998,17(12):3258-3268
The nature of the complex containing GRASP65, a membrane protein involved in establishing the stacked structure of the Golgi apparatus, and GM130, a putative Golgi matrix protein and vesicle docking receptor, was investigated. Gel filtration revealed that GRASP65 and GM130 interact in detergent extracts of Golgi membranes under both interphase and mitotic conditions, and that this complex can bind to the vesicle docking protein p115. Using in vitro translation and site-directed mutagenesis in conjunction with immunoprecipitation, the binding site for GRASP65 on GM130 was mapped to the sequence xxNDxxxIMVI-COOH at the C-terminus of GM130, a region known to be required for its localization to the Golgi apparatus. The same approach was used to show that the binding site for GM130 on GRASP65 maps to amino acids 189-201, a region conserved in the mammalian and yeast proteins and reminiscent of PDZ domains. Using green fluorescent protein (GFP)-tagged reporter constructs, it was shown that one essential function of the interaction between GRASP65 and GM130 is in the correct targeting of the two proteins to the Golgi apparatus.  相似文献   

8.
Golgins in the structure and dynamics of the Golgi apparatus   总被引:28,自引:0,他引:28  
Golgins are a family of coiled-coil proteins associated with the Golgi apparatus necessary for tethering events in membrane fusion and as structural supports for Golgi cisternae. Recent work has shown that golgins such as GM130, golgin-45 and p115 bind to Rab GTPases via their coiled-coil domains, and that GM130, rather than being part of a static structural matrix, is in dynamic exchange between the membrane surface and the cytoplasm. Golgins such as bicaudal-D1 and -D2 bind to Rab6, but, rather than tethering membranes together, link vesicles to the cytoskeleton, thus adding a new function for this class of proteins. Other golgins containing the Golgi targeting GRIP domain, rather than binding Rabs, interact with and are recruited to membranes by another class of GTPase, the Arls. Current evidence therefore suggests that golgins function in a variety of membrane-membrane and membrane-cytoskeleton tethering events at the Golgi apparatus, and that all these are regulated by small GTPases of the Rab and Arl families.  相似文献   

9.
Glucose is a precursor of lactose, the major carbohydrate and osmotic constituent of human milk, which is synthesized in the Golgi. The GLUT1 glucose transporter is the only glucose transporter isoform expressed in the mammary gland. The hypothesis that lactogenic hormones induce GLUT1 and cause its localization to the Golgi of mammary epithelial cells was tested in CIT(3)mouse mammary epithelial cells. Treatment with prolactin and hydrocortisone caused a 15-fold induction of GLUT1 by Western blotting, but 2-deoxyglucose uptake decreased. Subcellular fractionation and density gradient centrifugation demonstrated enrichment of Golgi fractions with GLUT1. Lactogenic hormones enhanced GLUT1 glycosylation, but did not determine whether GLUT1 was targeted to plasma membrane or to Golgi. Confocal microscopy revealed that lactogenic hormones alter GLUT1 targeting from a plasma membrane pattern to a predominant perinuclear distribution with punctate scattering through the cytoplasm. GLUT1 is targeted to a compartment which is more sensitive to Brefeldin A than the compartments in which GM130 and beta-COP reside. Targeting of GLUT1 to endosomes was specifically excluded. We conclude that prolactin and hydrocortisone induce GLUT1, enhance GLUT1 glycosylation, and cause glycosylation-independent targeting of GLUT1 to Brefeldin A-sensitive vesicles which may represent a subcompartment of cis-Golgi. These results demonstrate a hormonally-regulated targeting mechanism for GLUT1 and are consistent with an important role for GLUT1 in the provision of substrate for lactose synthesis.  相似文献   

10.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

11.
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.  相似文献   

12.
In recent years, a large number of coiled-coil proteins localised to the Golgi apparatus have been identified using antisera from human patients with a variety of autoimmune conditions [1]. Because of their common method of discovery and extensive regions of coiled-coil, they have been classified as a family of proteins, the golgins [1]. This family includes golgin-230/245/256, golgin-97, GM130/golgin-95, golgin-160/MEA-2/GCP170, giantin/macrogolgin and a related group of proteins - possibly splice variants - GCP372 and GCP364[2][3][4][5][6][7][8][9][10][11]. GM130 and giantin have been shown to function in the p115-mediated docking of vesicles with Golgi cisternae [12]. In this process, p115, another coiled-coil protein, is though to bind to giantin on vesicles and to GM130 on cisternae, thus acting as a tether holding the two together [12] [13]. Apart from giantin and GM130, none of the golgins has yet been assigned a function in the Golgi apparatus. In order to obtain clues as to the functions of the golgins, the targeting to the Golgi apparatus of two members of this family, golgin-230/245/256 and golgin-97, was investigated. Each of these proteins was shown to target to the Golgi apparatus through a carboxy-terminal domain containing a conserved tyrosine residue, which was critical for targeting. The domain preferentially bound to Rab6 on protein blots, and mutations that abolished Golgi targeting resulted in a loss of this interaction. Sequence analysis revealed that a family of coiled-coil proteins from mammals, worms and yeast contain this domain at their carboxyl termini. One of these proteins, yeast Imh1p, has previously been shown to have a tight genetic interaction with Rab6 [14]. On the basis of these data, it is proposed that this family of coiled-coil proteins functions in Rab6-regulated membrane-tethering events.  相似文献   

13.
When the ER to Golgi transport is blocked by a GTP-restricted mutant of Sar1p (H79G) in NRK-52E cells, most Golgi resident proteins are transported back into the ER. In contrast, the cis-Golgi matrix proteins GM130 and GRASP65 are retained in punctate cytoplasmic structures, namely Golgi remnants. Significant amounts of the medial-Golgi matrix proteins golgin-45, GRASP55 and giantin are retained in the Golgi remnants, but a fraction of these proteins relocates to the ER. Golgin-97, a candidate trans-Golgi network matrix protein, is retained in Golgi remnant-like structures, but mostly separated from GM130 and GRASP65. Interestingly, most Sec13p, a COPII component, congregates into larger cytoplasmic clusters soon after the microinjection of Sar1p(H79G), and these move to accumulate around the Golgi apparatus. Sec13p clusters remain associated with Golgi remnants after prolonged incubation. Electron microscopic analysis revealed that Golgi remnants are clusters of larger vesicles with smaller vesicles, many of which are coated. GM130 is mainly associated with larger vesicles and Sec13p with smaller coated vesicles. The Sec13p clusters disperse when p115 binding to the Golgi apparatus is inhibited. These results suggest that cis-Golgi matrix proteins resist retrograde transport flow and stay as true residents in Golgi remnants after the inhibition of ER to Golgi transport.  相似文献   

14.
Lefebvre B  Batoko H  Duby G  Boutry M 《The Plant cell》2004,16(7):1772-1789
The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.  相似文献   

15.
Coat protein I (COPI) transport vesicles can be tethered to Golgi membranes by a complex of fibrous, coiled-coil proteins comprising p115, Giantin and GM130. p115 has been postulated to act as a bridge, linking Giantin on the vesicle to GM130 on the Golgi membrane. Here we show that the acidic COOH terminus of p115 mediates binding to both GM130 and Giantin as well as linking the two together. Phosphorylation of serine 941 within this acidic domain enhances the binding as well as the link between them. Phosphorylation is mediated by casein kinase II (CKII) or a CKII-like kinase. Surprisingly, the highly conserved NH(2)-terminal head domain of p115 is not required for the NSF (N-ethylmaleimide-sensitive fusion protein)-catalyzed reassembly of cisternae from mitotic Golgi fragments in a cell-free system. However, the ability of p115 to link GM130 to Giantin and the phosphorylation of p115 at serine 941 are required for NSF-catalyzed cisternal regrowth. p115 phosphorylation may be required for the transition from COPI vesicle tethering to COPI vesicle docking, an event that involves the formation of trans-SNARE [corrected] (trans-soluble NSF attachment protein [SNAP] receptor) complexes.  相似文献   

16.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

17.
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.  相似文献   

18.
The Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases. Therefore, it is important to analyze the glycosylation function of the Golgi at the level of cisternae. Markers widely used for cis-, medial- and trans-cisternae/trans Golgi network (TGN) in Drosophila are GM130, 120 kDa and Syntaxin16 (Syx16); however the anti-120 kDa antibody is no longer available. In the present study, Drosophila Golgi complex-localized glycoprotein-1 (dGLG1) was identified as an antigen recognized by the anti-120 kDa antibody. A monoclonal anti-dGLG1 antibody suitable for immunohistochemistry was raised in rat. Using these markers, the localization of glycosyltransferases and nucleotide-sugar transporters (NSTs) was studied at the cisternal level. Results showed that glycosyltransferases and NSTs involved in the same sugar modification are localized to the same cisternae. Furthermore, valuable functional information was obtained on the localization of novel NSTs with as yet incompletely characterized biochemical properties.  相似文献   

19.
The GRIP domain is a targeting sequence found in a family of coiled-coil peripheral Golgi proteins. Previously we demonstrated that the GRIP domain of p230/golgin245 is specifically recruited to tubulovesicular structures of the trans-Golgi network (TGN). Here we have characterized two novel Golgi proteins with functional GRIP domains, designated GCC88 and GCC185. GCC88 cDNA encodes a protein of 88 kDa, and GCC185 cDNA encodes a protein of 185 kDa. Both molecules are brefeldin A-sensitive peripheral membrane proteins and are predicted to have extensive coiled-coil regions with the GRIP domain at the C terminus. By immunofluorescence and immunoelectron microscopy GCC88 and GCC185, and the GRIP protein golgin97, are all localized to the TGN of HeLa cells. Overexpression of full-length GCC88 leads to the formation of large electron dense structures that extend from the trans-Golgi. These de novo structures contain GCC88 and co-stain for the TGN markers syntaxin 6 and TGN38 but not for alpha2,6-sialyltransferase, beta-COP, or cis-Golgi GM130. The formation of these abnormal structures requires the N-terminal domain of GCC88. TGN38, which recycles between the TGN and plasma membrane, was transported into and out of the GCC88 decorated structures. These data introduce two new GRIP domain proteins and implicate a role for GCC88 in the organization of a specific TGN subcompartment involved with membrane transport.  相似文献   

20.
The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号