首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The follicle-stimulating hormone (FSH) receptor purified from calf bovine testis membranes appears to be an oligomeric glycoprotein, consisting of 4 disulfide-linked monomers of molecular weight about 60,000 each. Polyclonal antibodies to the hormone binding sites of the receptor have been developed. FSH interaction with the receptor seems to involve multiple discrete binding regions, which include amino acids 34-37 and 49-52 of the human FSH beta subunit. The interaction between FSH and the membrane-bound receptor is reversible at low temperatures but becomes increasingly irreversible as the temperature increases. FSH interaction with the soluble receptor is reversible over a wider temperature range. The hydrophobic effect is a significant factor in the initial hormone receptor interaction in each system. FSH bound to membrane receptors on cultured immature rat Sertoli cells is internalized and degraded to the level of amino acids. Current evidence suggests that the membrane receptor may exist as free receptor, and complexed with G-protein. A functional receptor/G-protein/adenylate cyclase complex has been reconstituted in liposomes. The G-protein of testis membranes contains both high and low affinity guanosine triphosphate (GTP) binding sites. Both are capable of modulating FSH receptor binding, whereas only the high affinity sites seem to be required for activation of adenylate cyclase. Although testis membranes contain a phosphatidylinositide hydrolysis system, the latter is not directly influenced by FSH.  相似文献   

2.
The effect of the polyamine, spermine, on the interaction of human 125I-labeled FSH with membrane-bound receptors derived from bovine calf testes has been examined. Concentrations of spermine less than 0.01 M resulted in a slight but insignificant (P greater than 0.10) enhancement of FSH concentrations of 0.01 M and above caused a progressive reduction of FSH binding. Membrane receptors incubated in the presence of spermine at concentrations inhibitory to human 125I-FSH binding (0.01-0.04 M) resulted in an 8-50% decrease in the apparent FSH receptor concentration and a 10-65% decrease in the affinity constant as determined by computerized analysis of the isothermic ligand-binding data. Within the temperature range 4-20 degrees C, simultaneous addition of spermine (0.025 M) increased the reversibility of human 125I-FSH binding approx. 10% (P less than 0.005). Delayed addition of spermine (0.01-0.04 M) resulted in a dose-related dissociation of human 125I-FSH already bound to its receptor (P less than 0.05). However, preincubation of membrane receptors with spermine (0.002-0.04 M) at 4 degrees C or 34 degrees C followed by washing and addition of human 125I-FSH, resulted in an increase in hormone binding (P less than 0.05) over that of controls. If membrane receptor was incubated at 34 degrees C with spermine in the absence of radioligand, the usual loss of hormone binding was reduced (P less than 0.05), while membrane receptor incubated with spermine at 4 degrees C exhibited hormone binding greater (P less than 0.05) than that observed before treatment. Thus, the mechanism of inhibition of human 125I-FSH binding to membrane receptors appears to be correlated with an increase in reversibility of the membrane receptor-human 125I-FSH complex and is expressed as a decrease in the calculated receptor concentration and affinity constant of that interaction. Second, spermine appears to stabilize the membrane receptor in the absence of ligand, presumably through a membrane effect. These data suggest that spermine, and possibly other polyamines, which are endogenous to eukaryotic cells and undergo increases in concentration following stimulation by trophic hormone may play a role in the modulation of the ligand-membrane receptor interaction, in part, through direct effects on the membrane and/or the receptor.  相似文献   

3.
The binding of many polypeptide hormones to cell surface receptors does not appear to follow the law of mass action. While steady–state binding data are consistent in many cases with either heterogeneous populations of binding sites or interactions of the type known as negative cooperativity, study of the kinetics of dissociation of the hormone receptor complex allows an unambiguous demonstration of cooperative interactions. Negative cooperativity, which seems to be wide-spread among hormone receptors, provides exquisite sensitivity of the cell at low hormone concentrations while buffering against acutely elevated hormone levels. The molecular mechanisms underlying the cooperativity are still largely unknown. Cooperativity may stem from a conformational transition in individual receptors or involve receptor aggregation in the fluid membrane (clustering) or more extensive membrane phenomena. Thus, new models of hormone action must be considered which integrate the progress in our knowledge of both the complex mechanisms regulating hormone binding to their surface receptors, and the dynamic properties of the cell membrane.  相似文献   

4.
Kinetic studies of the binding and dissociation of [125I]-human growth hormone to rabbit liver and mammary gland membrane receptors have showed that the binding of [125I]-human growth hormone was largely irreversible to liver membrane receptors and completely to the solubilised mammary gland receptor. As Scatchard analysis assumes complete reversibility of the hormone-receptor interaction the validity of estimates of affinity and capacity of receptors derived by this analysis may be questionable. Theoretical considerations show that in unimolecular irreversible interactions of hormone and receptor, a nonlinear (concave) or a linear Scatchard plot can be obtained. In linear Scatchard plots the capacity of the receptor obtained by extrapolation represents an overestimation of true capacity. This overestimation correlates with the value of the intercept in the Scatchard plot.  相似文献   

5.
Using crude progesterone receptor preparations from T47D human breast cancer cells, we show by immunoprecipitation assay that receptor specifically and with high affinity recognizes the hormone response element (HRE) of the mouse mammary tumor virus (MMTV). The use of crude preparations minimizes alterations of receptors or loss of associated factors that may occur during purification. Specific binding was obtained at 1:1 molar ratios of receptor to DNA, and HRE sequences are recognized with an affinity at least 3 orders of magnitude greater than nonspecific DNA. We have compared the DNA-binding activities of different forms of progesterone receptors. The unliganded 8S cytosol receptor had low but detectable binding activity for MMTV DNA. Addition of hormone to cytosol produced a small but consistent 2.5-fold increase. In vitro methods of transforming cytosol receptors from an 8S to a 4S species failed to increase DNA-binding further. By contrast, 4S receptors bound by R5020 in whole cells and extracted from nuclei by salt, displayed a substantially higher (average, 11-fold) binding activity than an equal number of unliganded cytosol receptors. The dissociation constants for cytosol and nuclear receptor binding to MMTV DNA were similar (approximately 2 x 10(-9) M). Thus, nuclear receptors possess a higher capacity for binding to specific recognition sequences. These results suggest that hormone or a hormone-dependent mechanism increases the intrinsic DNA-binding activity of receptors independent of receptor transformation from 8S to 4S. Further experiments indicate that a nonreceptor activity in nuclear extracts can increase the sequence-specific DNA-binding activity of cytosol receptors. This activity is present in both T47D cells and receptor-negative MDA-231 cells. We conclude that the higher DNA-binding activity of the nuclear receptor-hormone complex is due in part to receptor interaction with other nuclear proteins or factors. Such interactions may function to maintain receptors in a disaggregated active complex or to stabilize their binding to specific DNA sites.  相似文献   

6.
The mobile receptor hypothesis has been proposed to describe the process by which hormone receptor binding initiates a biological response; it states that receptors, which can diffuse independently in the plane of the membrane, reversibly associate with effectors to regulate their activity. The affinity for effector is greater when the receptor is occupied by hormone.A mathematical expression of the mobile receptor hypothesis is used to show that: (1) The predicted kinetics of hormone receptor binding may be indistinguishable from “negative cooperativity”. (2) Receptor occupancy and biological response may be coupled in a non-linear fashion.By choosing specific parameters, most of the existing data on insulin binding and biological responses can be explained in terms of the mobile receptor hypothesis. Thus, the following are easily explained: (1) A single homogeneous receptor may appear kinetically to be composed of two classes (of high and low affinity) of receptors. (2) Occupancy of the apparent class of high affinity receptors is related linearly to the biological response. (3) The same receptor in different tissues may appear to have different affinity. (4) The binding of different biologically active insulin analogues may exhibit different degrees of “cooperatively.” These considerations may also be pertinent to intepretations of other hormone-receptor systems and of various ligand-macromolecule interactions.  相似文献   

7.
The mobile receptor hypothesis has been proposed to describe the process by which hormone receptor binding initiates a biological response; it states that receptors, which can diffuse independently in the plane of the membrane, reversibly associate with effectors to regulate their activity. The affinity for effector is greater when the receptor is occupied by hormone. A mathematical expression of the mobile receptor hypothesis is used to show that: (1) The predicted kinetics of hormone receptor binding may be indistinguishable from "negative cooperativity." (2) Receptor occupancy and biological response may be coupled in a non-linear fashion. By choosing specific parameters, most of the existing data on insulin binding and biological responses can be explained in terms of the mobile receptor hypothesis. Thus, the following are easily explained: (1) A single homogeneous receptor may appear kinetically to be composed of two classes (of high and low affinity) of receptors. (2) Occupancy of the apparent class of high affinity receptors is related linearly to the biological response. (3) The same receptor in different tissues may appear to have different affinity. (4) The binding of different biologically active insulin analogues may exhibit different degrees of "cooperativity." These considerations may also be pertinent to interpretations of other hormone-receptor systems and of various ligand-macromolecule interactions.  相似文献   

8.
Major developments in the area of polypeptide hormone receptors have been reviewed. Receptors are high affinity, high specificity binding sites which appear to be located largely, if not entirely, on the plasma membrane of cells. Receptors are proteins intimately associated with and influenced by lipids. Receptor sites and degrading sites appear to be readily distinguishable entities. The binding of hormone to receptor is distinct and has been dissociated from subsequent steps leading to hormonal response. There is no direct relationship between receptor occupancy and the magnitude of target response to hormone. So called 'spare' receptors can be viewed thermodynamically as enhancing target tissue sensitivity to hormone. The binding of hormone to receptor appears to be a point at which regulation of tissue sensitivity can be influenced either through altering the affinity for hormone or the number of receptors. One factor apparently involved in the regulation of receptor levels is the hormone itself. Receptors have been used to develop assay procedures which have significantly complemented the bioassay and radioimmunoassay. Finally, the measurement of receptor levels in disease has provided new insights into pathophysiology.  相似文献   

9.
Thyroid hormone plays important roles in development, differentiation, and metabolic homeostasis by binding to nuclear thyroid hormone receptors, which regulate target gene expression by interacting with DNA response elements and coregulatory proteins. We show that thyroid hormone receptors also are single-stranded RNA binding proteins and that this binding is functionally significant. By using a series of deletion mutants, a novel RNA-binding domain was localized to a 41-amino acid segment of thyroid hormone receptor alpha1 between the second zinc finger and the ligand-binding domain. This RNA-binding domain was necessary and sufficient for thyroid hormone receptor binding to the steroid receptor RNA activator (SRA). Although SRA does not bind directly to steroid receptors, it has been identified as a steroid receptor coactivator, and was thought not to be a coactivator for thyroid hormone receptors. However, transfection studies revealed that SRA enhances thyroid hormone induction of appropriate reporter genes and that the thyroid hormone receptor RNA-binding domain is important for this enhancement. We conclude that thyroid hormone receptors bind RNA through a novel domain and that the interaction of this domain with SRA, and perhaps other RNAs, enhances thyroid hormone receptor function.  相似文献   

10.
Thyroid hormones have diverse effects on growth and metabolism. Specific "receptor" proteins which bind triiodothyronine and other biologically active analogs and which may be involved in thyroid hormone action have been recently found in nuclei of responsive tissues. This report presents studies of these receptors in rat liver nuclei. Confirming previous reports, a Scatchard analysis of the binding data suggests the reaction, triiodothyronine + specific receptor in equilibrium with triiodothyronine-receptor complex, with an apparent equilibrium dissociation constant (Kd) at 22 degrees of about 190 pM and a capacity of about 1 pmol of triiodothyronine-binding sites per mg of DNA. The kinetics of the binding were also examined. Triiodothyronine-receptor complex formation is second order and dissociation is first order. The apparent association (k+1) and dissociation (k minus 1) rate constants at 22 degrees are, respectively, 4.7 times 10-7 m-minus 1 min-minus 1 and 7.6 times 10-minus 3 min-minus 1. The apparent Kd, estimated from the ratio of the rate constants (k minus 1:k+1), was about 150 pM, similar to that determined from the equilibrium data. These data support the expression written above for the interaction of thyroid hormone with its receptor. Additional kinetic experiments indicate that some of the triiodothyronine binding by cell-free nuclei is to sites previously occupied by hormone in the intact animal, providing further evidence that the intact cell and cell-free reactions are the same. It was previously found that nuclear-bound triiodothyronine is localized in chromatin. We found that isolated chromatin retains specific binding activity similar to that of isolated nuclei. Thus, binding may not require cytoplasmic, nucleoplasmic, or nuclear membrane factors. These findings may imply that chromatin localization of the receptor does not depend on the hormone. This idea is supported by an earlier finding that binding activity is present in nuclei from thyroidectomized animals. However, many stimuli such as steroid hormones, bacterial inducers, and cyclic adenosine 3':5'-monophosphate in bacteria influence regulatory proteins at the gene level by promoting the protein's addition to or removal from chromatin. Thus, we studied the effect of thyroid hormone on the nuclear content of receptors under assay conditions of receptor stability and reversible binding. Receptor levels in hypothyroid animals are identical with those in euthyroid animals. These data suggest that the hormone does not influence the nuclear localization of receptors. Thus, the basis for thyroid hormone action may be to regulate the activity of receptors resident in chromatin rather than to promote receptor addition to or removal from chromatin.  相似文献   

11.
Antisera against a partially purified growth hormone receptor derived from rabbit liver were generated in guinea pigs. The antisera specifically inhibited the binding of 125I-ovine growth hormone (oGH) to liver membranes but had no effect on the binding of 125I-ovine prolactin to rabbit mammary gland receptors. These antisera did not bind or destroy 125I-oGH. Moreover, the binding of labeled growth hormone to membrane particles derived from liver of several species was also inhibited by the antisera, thus suggesting that immunological determinants of the growth hormone receptor of several species are similar. gamma-Globulin fractions derived from the antisera were responsible for the inhibition. In addition 125I-gamma-globulin derived from one antiserum bound to membrane pellets with a corresponding decline in 125I-oGH binding. Kinetic analysis of inhibition of 125I-oGH binding suggested a hyperbolic competitive inhibition, a point of view which is favored by the demonstration of a hormone receptor . antibody complex. The availability of the antireceptor sera confirmed previous data that differential affinity chromatography separated growth hormone and prolactin receptors in solubilized rabbit liver membrane preparations. The antireceptor sera will be useful probes in further characterization of the growth hormone receptor.  相似文献   

12.
Luteinizing hormone (LH) and human chorionic gonadotrophin (hCG) receptors are coupled to intracellular effector systems, most notably adenylate cyclase, through guanyl nucleotide-binding proteins or G-proteins. The molecular mechanism involved in the dynamic coupling of the LH/hCG receptor however, are not known. It has been postulated that receptor aggregation at the molecular level plays a critical role in this process. There have been attempts to understand the receptor association and dissociation phenomena at the molecular level. One of them involves the participation of the major histocompatibility complex (MHC) class I antigen in the mechanism of receptor activation and/or expression. One molecular basis for these mechanisms consists of a physical interaction between MHC proteins and receptors to form "compound receptors" able to transfer a hormonal signal to the cell. Using a photo-reactive probe we demonstrated that the LH/hCG receptors and the class I antigens are closely associated in the membrane. Thus, it is possible to form covalent complexes of hCG and class I antigens through the binding of the hormone to specific receptors. These findings imply that LH/hCG receptors and the MHC class I antigens may interact at the level of the plasma membrane in the mechanism of LH action. We also performed experiments using a single cell and limiting stimulation to a patch of membrane. The results stimulating the cell in a localized area suggested that even if all components are entirely free to float there is a constraint in the localization of the receptor, G-protein, and/or the effector, supporting the constraint dissociation model. Within a limited area subunits could dissociate, but they would not be free to diffuse throughout the membrane. Moreover the concept of compartmentalization that has been utilized to explain some inconsistencies in second-messenger action now can be proved by experimental design.  相似文献   

13.
The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major drug targets in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Interestingly, recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, which could induce a conformational change in the receptor, or (ii) through an indirect way by altering the membrane physical properties in which the receptor is embedded or due to a combination of both. We discuss here a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs and propose that cholesterol binding sites in GPCRs could represent ‘nonannular’ binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin1A receptor, which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin1A receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin1A receptor, a representative GPCR, for which we have previously demonstrated specific requirement of membrane cholesterol for receptor function. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin1A receptors and are conserved over evolution. Progress in deciphering molecular details of the nature of GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.  相似文献   

14.
The ligand-receptor interaction has been commonly used in development of high throughput screening assays for new drugs. In some cases, an endogenous ligand interacts not only with membrane receptors but also with soluble binding proteins. Corticotrophin-releasing factor (CRF) is an important stress neurotransmitter/hormone involved in both the central and peripheral nervous systems. CRF exerts its function by interacting with CRFR1 and CRFR2 receptors. In addition, CRF-binding protein (CRF-BP) binds CRF with high affinity. Accordingly, CRF-BP has been suggested to play an important role in modulating CRF function. Based on the potential involvement of CRF-BP in many neurological disorders, it is desirable to develop a screening assay to look for drugs that either mimic or interfere with CRF binding to CRF-BP. An assay was developed to monitor the interactions of radiolabeled CRF with human/rat CRF-BP and the mouse CRFR1 (mCRFR1) receptor. By carefully examining the binding characteristics of radiolabeled CRF to mCRFR1, the assay was able to identify compounds that bind to CRF-BP with high affinity and have little or no affinity for mCRFR1 receptors. Based on a mathematical model, we have verified the screening system with several well-characterized CRF ligands that all have different affinities for CRF receptors and CRF-BP.  相似文献   

15.
Understanding biological processes assumes a detailed understanding of the interaction of all involved molecules. Here the effect of the peptide hormone angiotensin II (Ang II), an agonist of the angiotensin receptors, on the structure of unilamellar and multilamellar dimyristoyl phosphatidylcholine vesicles was studied by small angle neutron scattering, dynamic light scattering and differential scanning calorimetry. The calorimetry data indicate a weak interaction of Ang II with the surface of the membrane bilayer, as the pretransition persists during all experiments, and the main transition is only slightly shifted towards higher temperatures. From the SANS data we were able to confirm the calorimetric data and verify the interaction of the hormone with the membrane surface. At low temperatures, when the lipid molecules are in the gel phase, more precisely in the ripple phase, the peptide penetrates in the head group core, but due to the close packing of the acyl chains, the hydrophobic region is not affected. In a temperature region below but close to the region of the phase transition, the hydrophibic core starts to be affected by the peptide, and the same is true for the fluid phase. Upon binding of the peptide, the thickness of the head group increases, and the scattering length density of the head group starts to rise with increasing peptide concentrations. This interaction and binding to the membrane surface may be relevant for the relocation, binding and reconstitution of the angiotensin receptors into the membrane. Second, the peptide adsorption to the membrane surface may contribute to the binding of Ang II in the active site of the receptor.  相似文献   

16.
17.
Cellular binding proteins of thyroid hormones   总被引:1,自引:0,他引:1  
K Ichikawa  K Hashizume 《Life sciences》1991,49(21):1513-1522
  相似文献   

18.
The structural requirements for the interaction of about 80 cyclic hydrocarbons and related compounds with the androgen receptor of rat ventral prostate, the estrogen receptor of human breast tumor MCF-7 cells, and the glucocorticoid receptor of rat liver were examined by comparing their abilities to compete with radioactive hormones for binding to the respective receptors. The results indicate that the receptor-binding affinity of a compound is dependent on its electronic configuration and geometrical similarity to a portion of a natural steroid hormone which can be recognized by local ligand-binding sites in the receptor. For the estrogen receptor, beta-phenols are more active than the corresponding alpha-phenols, whereas nonphenolic compounds are totally inactive. For androgen and glucocorticoid receptors, alpha-phenols are more active than beta-phenols. The androgen receptor can interact stereospecifically with nonoxygenated and nonalkylated cyclic hydrocarbons, such as 10,11-dihydro-5H-dibenzo[a,d] cycloheptene or 9,10-dihydrophenanthrene, which can, in vivo, inhibit the androgen-dependent growth of the male accessory reproductive organs. The affinities of naphthalene, anthracene, phenanthrene, biphenyl, and adamantane toward glucocorticoid and androgen receptors can be enhanced by acetylation or ethanolization of these ligands. Our results also indicate that, while the hormonal action of a steroid may be dependent on the interaction of a functional group on the hormone with a specific group on the receptor, the presence of such a group may not be required for the antagonistic activity of a compound that can physically block hormone binding to the receptor. Thus, many small molecules that were hitherto considered to be biologically inert may interact with steroid receptors specifically and affect hormonal activities in vivo.  相似文献   

19.
Isoproterenol incubated with turkey erythrocyte membranes causes exposure of a specific --SH in a component associated with the beta-adrenergic receptor, presumably in the guanyl nucleotide binding protein. Addition of a reagent which interacts with that specific --SH results in trapping of the hormone in the receptor. As a consequence, the number of hormone binding sites and the function of the receptor are both drastically reduced. Extended incubation at alkaline pH or addition of GDP or GTP at high concentration reactivate the beta-adrenergic receptor. Labeled antagonist binding as well as function of the receptor in activating an adenylate cyclase system are restored. The findings suggest that the normal interaction of the hormone-receptor complex with the guanyl nucleotide binding protein involves a conformational change which transiently locks the hormone in the receptor. GTP releases the tight interaction while addition of an --SH reagent traps the ternary complex of hormone-receptor-guanyl nucleotide binding protein in the locked conformation. Since the components of different hormone-activated adenylate cyclase systems were shown to be interchangeable, it seems likely that the hormone-receptor interaction with the guanyl nucleotide binding protein, as revealed in the present study, is not limited to beta-adrenergic receptor systems.  相似文献   

20.
We have previously described the binding of biologically active 125I gonadotropin-releasing hormone to the 10,800 × g membrane fraction prepared from 7-day castrate adult female rat anterior pituitary glands. Specific binding with two equilibrium association constants (109 liters per mole and 105 liters per mole) was found and an equilibrium competitive binding radio-receptor assay established. In order to further characterize the gonadotropin-releasing hormone receptor, 20 synthetic analogs with known bioactivity were tested in the radioreceptor assay. In vivo biological activity correlated with high affinity receptor binding but not with low affinity binding. Inhibitory analogs with no in vivo biological activity and weak antagonistic properties did not bind, while in vivo active or superactive analogs bound to high affinity receptors. These findings suggest that the high affinity gonadotropin-releasing hormone receptor binds only biologically active gonadotropin-releasing hormone like peptides and that this binding may be the initial step in gonadotropin-releasing hormone actions at the pituitary level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号