首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nitrogen fertilization on the phytomass production, shoot length and leaf secondary phenolics in nine Salix myrsinifolia clones was investigated. Cuttings taken from 1-year-old and 2-year-old shoot parts of field cultivated clones were grown at three concentrations of nitrogen (7, 150 and 300 ppm) in a greenhouse for one growing season. The willow clones differed significantly in phytomass yield and secondary phenolics content. Nitrogen fertilization affected significantly the growth and secondary metabolism of willow clones. In most clones, the addition of nitrogen from a sub-optimum concentration (7 ppm) to an optimum concentration (150 ppm) appeared to reduce the amounts of salicortin, chlorogenic acid and unknown salicylate and increased shoot phytomass, but a supraoptimum nitrogen concentration (300 ppm) resulted in highly variable growth and secondary phenolic responses. A significantly negative correlation between leaf phytomass and amount of total phenolics at sub-optimum and optimum N-treatments indicates trade-off between growth and secondary metabolism in willow clones at these treatments. However, the leaf phytomass:total amount of phenolics ratio varied significantly among clones, and in all clones it was not significantly lower at sub-optimum N-treatment than at optimum N-treatment.  相似文献   

2.
Phenotypic correlations and quantitative trait loci (QTL) for important growth traits and a surrogate of intrinsic water-use efficiency (leaf delta(13)C) were analysed in a willow pedigree of 92 full-sibling clones grown under two water regimes. The major objective was to examine the genetic basis of the phenotypic correlations. Cuttings of Salix were glasshouse-grown during one growing season. The relative growth rate (RGR) and underlying traits were assessed. QTL analysis was conducted based on an available linkage map for Salix. Leaf area productivity and leaf nitrogen productivity were more important in determining RGR than leaf area ratio and specific leaf area. However, phenotypic correlations among growth traits partly varied between the two environments. QTL were detected for most growth traits, among them many common QTL for different traits. The QTL pattern reflected the phenotypic correlation pattern. None of the QTL for the complex traits was consistent across the different environments. The results demonstrate a genetic basis for phenotypic correlations among growth traits in Salix, and provide evidence for the existence of 'master switches' regulating some of the traits.  相似文献   

3.
比较了两种不同攀援习性, 卷须缠绕种薄叶羊蹄甲(Bauhinia tenuiflora)和茎缠绕种刺果藤(Byttneria aspera), 木质藤本植物的形态、生长及光合特性对不同光强(4%、35%和全光照)和土壤养分(高和低)的响应。两种藤本植物大部分表型特征主要受光照的影响, 而受土壤养分的影响较小。弱光促进地上部分生长, 弱光下两种植物均具有较大的比叶面积(specific leaf area, SLA)、茎生物量比(stem mass ratio, SMR)和平均叶面积比(mean leaf area ratio, LARm)。高光强下, 两种植物的总生物量和投入到地下部分的比重增加, 具有更大的根生物量比(root mass ratio, RMR)、更多的分枝数、更高的光合能力( maximum photosynthetic rate, Pmax)和净同化速率(net assimilation rate, NAR), 综合表现为相对生长速率(relative growth rate, RGR)增加。两种藤本植物的Pmax与叶片含氮量的相关性均未达显著水平, 但刺果藤的Pmax与SLA之间呈显著的正相关, 而薄叶羊蹄甲的Pmax与SLA之间相关性不显著。在相同光照强度和土壤养分条件下, 卷须缠绕种薄叶羊蹄甲的RGR显著高于茎缠绕种刺果藤。薄叶羊蹄甲的RGR与NAR呈显著正相关, 其RGR与SLA、平均叶面积比(LARm)及Pmax之间相关性不显著。刺果藤的RGR与NAR呈显著的正相关, 而与SLA存在显著的负相关。上述结果表明, 与土壤养分相比, 光照强度可能是决定木质藤本分布更为重要的生态因子。卷须缠绕种薄叶羊蹄甲由于具有特化的攀援器官, 在形态上和生理上具有更大的可塑性, 这使得卷须缠绕种木质藤本在与其它植物的竞争中更具优势。  相似文献   

4.
Observed genotypic difference in P utilization efficiency in soil grown potatoes led to the present study to investigate possible mechanisms of P utilization efficiency in potato genotypes grown in nutrient solution under three P regimes (low, medium and high). For all genotypes relative growth rate (RGR), leaf P content, net assimilation rate (NAR) and leaf area ratio (LAR) increased while P utilization efficiency and leaf starch content decreased at the two higher P regimes compared to the low P regime. The P-efficient genotypes CGN 17903 and CIP 384321.3 had higher RGR compared to the P-inefficient genotypes CGN 22367 and CGN 18233, which resulted from enhanced NAR rather than from LAR. Net photosynthetic rate was similar for all genotypes. However, for P-inefficient genotype CGN 22367, the lower NAR could be explained by increased leaf dark respiration. For P-inefficient genotype CGN 18233 we speculate that increased carbon cost of root respiration or exudation or both, caused low NAR, since leaf dark respiration of this genotype was similar to that of P-efficient genotypes.  相似文献   

5.
Abstract: A growth analysis was conducted with 24 central European grass species in full daylight to test whether traits underlying interspecific variation in relative growth rate (RGR) are the same in full daylight as they are at lower light, and whether this depends on the ecological characteristics of the studied species, i.e., their requirements with respect to nutrient and light availability.
In contrast to studies with herbaceous species at lower light, net assimilation rate (NAR) contributed more than leaf area ratio (LAR) or specific leaf area (SLA) to interspecific variation in RGR. This was associated with a larger interspecific variation in NAR than found in experiments with lower light. Without the two most shade-tolerant species, however, the contribution of LAR and its components to interspecific variation in RGR was similar or even higher than that of NAR.
Leaf dry matter content correlated negatively with RGR and was the only component of LAR contributing in a similar manner to variation in LAR and RGR. There was a positive correlation between NAR and biomass allocation to roots, which may be a result of nutrient-limited growth. RGR correlated negatively with biomass allocation to leaves. Leaf thickness did not correlate with RGR, as the positive effect of thin leaves was counterbalanced by their lower NAR.
Low inherent RGR was associated with species from nutrient-poor or shady habitats. Different components constrained growth for these two groups of species, those from nutrient-poor habitats having high leaf dry matter content, while those from shady habitats had thin leaves with low NAR.  相似文献   

6.
Abstract 1. There was a positive correlation between oviposition and feeding preferences and offspring performance in the spittlebug Aphrophora pectoralis Matsumura (Homoptera: Cercopoidea, Aphrophoridae) on four species of willow Salix sp. (Salicaceae) growing near Sapporo, Japan. Spittlebugs preferred rapidly growing shoots where performance was highest.
2. When the effects of shoot length were removed, egg densities on willow species were associated with offspring performance on three of four species. Egg densities and survival rates were low on Salix integra and Salix miyabeana . Survival rates were high on Salix sachalinensis , which had high egg densities, and Salix hultenii , which had low egg densities.
3. Aphrophora pectoralis formed mating aggregations almost exclusively on S. sachalinensis but then dispersed to other willow species to oviposit.
4. Nymphs dispersed from the oviposition site to feed on nearby shoots within the same plant but they did not disperse to other willow plants. Nymphs had the same preference for rapidly growing shoots as ovipositing females, so they were able to refine the maternal choice by moving to larger shoots near the shoot on which they had eclosed.
5. The spittlebugs were highly aggregated at all life stages so that even at high densities only a small proportion of the most vigorously growing shoots was utilised.  相似文献   

7.
To determine (1) whether acclimation of carbon metabolism to low temperatures results in recovery of the relative growth rate (RGR) of plants in the cold and (2) the source of N underpinning cold acclimation in Arabidopsis thaliana, we supplied plants with a nutrient solution labelled with 15N and subjected them to a temperature shift (from 23 to 5 °C). Whole‐plant RGR of cold‐treated plants was initially less than 30% of that of warm‐maintained control plants. After 14 d, new leaves with a cold‐acclimated phenotype emerged, with the RGR of cold‐treated plants increasing by 50%; there was an associated recovery of root RGR and doubling of the net assimilation rate (NAR). The development of new tissues in the cold was supported initially by re‐allocation of internal sources of N. In the longer term, the majority (80%) of N in the new leaves was derived from the external solution. Hence, both the nutrient status of the plant and the current availability of N from external sources are important in determining recovery of growth at low temperature. Collectively, our results reveal that both increased N use efficiency and increases in nitrogen content per se play a role in the recovery of carbon metabolism in the cold.  相似文献   

8.
Relatively low winter precipitation (e.g., 18–28 cm from October to May compared to 45 to 65 cm) caused reduced growth of the arroyo willow,Salix lasiolepis, with number of shoots per stem initiated and shoot length reduced. Resources were reduced for the stem-galling sawfly,Euura lasiolepis, which declined in numbers after the relatively dry winter of 1980–81. Sawfly phenology was advanced relative to willow phenology in the 1981 generation, causing an additional reduction in resource availability. These direct effects of precipitation on the sawfly were increased by indirect effects on survivorship of the 1981 generation. Egg death in galls increased on water-stressed willow plants, forming the major mortality in the generation. This resulted in very low survival in the generation and an even lower population in the 1982 generation, even though resources recovered after high precipitation during the 1981–82 winter (46.7 cm). An experiment using high, medium, and low water treatments on potted willow plants demonstrated that the effects on willows and sawflies could be reproduced using only water as a variable.  相似文献   

9.
比较了两种不同攀援习性,卷须缠绕种薄叶羊蹄甲(Bauhinia tenuiflora)和茎缠绕种刺果藤(Byttneria aspera),木质藤本植物的形态、生长及光合特性对不同光强(4%、35%和全光照)和土壤养分(高和低)的响应。两种藤本植物大部分表型特征主要受光照的影响,而受土壤养分的影响较小。弱光促进地上部分生长,弱光下两种植物均具有较大的比叶面积(specific leaf area,SLA)、茎生物量比(stem mass ratio,SMR)和平均叶面积比(mean leaf area ratio,LARm)。高光强下,两种植物的总生物量和投入到地下部分的比重增加,具有更大的根生物量比(root mass ratio,RMR)、更多的分枝数、更高的光合能力(maximum photosynthetic rate,Pmax)和净同化速率(net assimilation rate,NAR),综合表现为相对生长速率(relative growth rate,RGR)增加。两种藤本植物的Pmax与叶片含氮量的相关性均未达显著水平,但刺果藤的Pmax与SU志间呈显著的正相关,而薄叶羊蹄甲的Pmax与SLA之间相关性不显著。在相同光照强度和土壤养分条件下,卷须缠绕种薄叶羊蹄甲的RGR显著高于茎缠绕种刺果藤。薄叶羊蹄甲的RGR与NAR呈显著正相关,其RGR与SLA、平均叶面积比(EARm)及Pmax之间相关性不显著。刺果藤的RGR与NAR呈显著的正相关,而与SLA存在显著的负相关。上述结果表明,与土壤养分相比,光照强度可能是决定木质藤本分布更为重要的生态因子。卷须缠绕种薄叶羊蹄甲由于具有特化的攀援器官,在形态上和生理上具有更大的可塑性,这使得卷须缠绕种木质藤本在与其它植物的竞争中更具优势。  相似文献   

10.
Chlorpyrifos is one of the commonly used organophosphorus insecticides that are implicated in serious environmental and human health problems. To evaluate plant potential for uptake of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated. Chlorpyrifos was taken up from nutrient solution by all seven plant species. Significant amounts of chlorpyrifos accumulated in plant tissues, and roots accumulated higher concentrations of chlorpyrifos than did shoots. Chlorpyrifos did not persist in the plant tissues, suggesting further metabolism of chlorpyrifos in plant tissue. To our knowledge, this work represents the first report for phytoremediation of chlorpyrifos using poplar and willow plants.  相似文献   

11.
Information on the heavy metal toxicity thresholds of woody species endemic to the western United States is lacking but critical for successful restoration of contaminated riparian areas. Manganese (Mn, 50-10,000 mg l(-1)) and zinc (Zn, 100-1000 mg l(-1)) toxicity thresholds were determined for Geyer (Salix geyeriana Anderss.) and mountain (S. monticola Bebb) willow using a sand-culture technique. The lethal concentration (50%) values were 3117 and 2791 mg Mn l(-1) and 556 and 623 mg Zn l(-1) for Geyer and mountain willow, respectively. The effective concentration (50%) values for shoots were 2263 and 1027 mg Mn l(-1) and 436 and 356 mg Zn l(-1) for Geyer and mountain willow, respectively. Shoot tissue values did not increase with increasing treatment concentrations. However, metals in the roots did increase consistently in response to the treatments. Metal levels in the shoot tissues were low for Zn (65-139 mg kg(-1)) and moderate for Mn (1300-2700 mg kg(-1)). Geyer and mountain willow have good resistance to Mn, possibly due to evolution in hydric soils with increased Mn availability, and may be useful for phytostabilization of soils with high levels of available Mn. Both species were affected to a greater degree by Zn as compared to Mn, but still exhibited good resistance and should be useful in remediating sites with at least moderate levels of available Zn. Based on the thresholds evaluated, Geyer willow had greater resistance to both Mn and Zn as compared to mountain willow, especially at lower concentrations in which growth of Geyer willow was actually stimulated.  相似文献   

12.
A nutrient thin film hydroponic system has been developed which allows rapid screening of willow (Salix) clones for their resistance to heavy metals, and hence their use in phytoremediation. Two clones known to be different in their resistance to heavy metals (Salix burjatica (Germany) and S. triandra x viminalis (Q83)), could be distinguished on the basis of leaf biomass, root biomass and stem height after 6 weeks. There were also differences in the uptake of heavy metals between the two clones.  相似文献   

13.
The potential for nutrient load (30, 100 and 350 g N m−2 per year) to alter plant performance under saline conditions (control, 4.5, 9 and 13 dS m−1) was examined in the sedge Bolboschoenus medianus. Relative growth rates (RGR) across nutrient loadings ranged from 30.2 to 41.8 mg g−1 per day in controls and were reduced to 20.9–28.5 mg g−1 per day by salinities of 13 dS m−1. Whilst higher nutrient loads generally increased RGR, the response was smaller at higher salinities. Responses to salinity and nutrient load were specific. Nutrient load increased the RGR via increases in the leaf area ratio (LAR). The LAR ranged from 1.9 to 2.1 m2 kg−1 across salinity treatments at 30 g N m−2 per year, and increased to 2.5–2.8 m2 kg−1 at 350 g N m−2 per year. Salinity reduced the RGR via a reduction in the net assimilation rate (NAR). The NAR in control plants ranged from 14.7 to 16 g m−2 per day across nutrient loadings and decreased to 11–12 g m−2 per day at 13 dS m−1. Carbon isotope discrimination of leaves decreased by 2–3‰ in response to 13 dS m−1 at the lower nutrient loadings. A prominent response of B. medianus to salinity was a change in biomass allocation from culms to tubers. In contrast, the response to nutrient load was characterised by a shift in biomass allocation from roots to leaves.  相似文献   

14.
J. J. James 《Plant and Soil》2008,310(1-2):201-210
A high relative growth rate (RGR) is thought to be an important trait allowing invasive annual grasses to exploit brief increases in nitrogen (N) supply following disturbance in the Intermountain West. Managing soils for low N availability has been suggested as a strategy that may reduce this growth advantage of annual grasses and facilitate establishment of desirable perennials grasses. The objective of this study was to examine the degree to which soil N availability affects RGR and RGR components of invasive annual and desirable perennial grasses. It was hypothesized that (1) invasive annual grasses would demonstrate a proportionately greater reduction in RGR than perennial grasses as soil N stress increased, and (2) the mechanism by which low N availability decreases RGR of annual and perennial grasses would depend on the severity of N stress, with moderate N stress primarily affecting leaf mass ratio (LMR) and severe N stress primarily affecting net assimilation rate (NAR). Three annual and three perennial grasses were exposed to three levels of N availability. RGR and components of RGR were quantified over four harvests. Moderate N stress reduced RGR by decreasing LMR and severe N stress lowered RGR further by decreasing NAR. However, reduction in RGR components was similar between invasive and natives, and as a consequence, annual grasses did not demonstrate a proportionately greater reduction in RGR than perennials under low N conditions. These results suggest managing soil N will do little to reduce the initial growth advantage of annual grasses. Once perennials establish, traits not captured in this short-term study, such as high tissue longevity and efficient nutrient recycling, may allow them to compete effectively with annuals under low N availability. Nevertheless, if soil N management does not facilitate the initial establishment of perennials in annual grass infested communities, then there is little likelihood that such techniques will provide a long-term benefit to restoration projects in these systems.  相似文献   

15.
Black willow (Salix nigra) uses periodic flood events for dispersal of vegetative propagules, subjecting them to periods of soaking before their deposition along the streambank. It was hypothesized that this life history trait results in optimal conditions for willow growth and survival. To test this hypothesis, a greenhouse experiment was conducted using 1.2‐m‐long black willow cuttings (posts) with a basal diameter of 5 cm. Cuttings were subjected to three soaking treatments (0, 3, and 10 days) and then grown under four soil moisture regimes (control, drought, permanently flooded, and intermittently flooded). Growth, biomass, and survival were recorded. Results showed that soaking posts for 10 days was most beneficial in the control soil moisture regime, enhancing root, shoot, leaf, and total biomass production. Shoot abundance and growth were also enhanced by 10 days of soaking in the control and permanently flooded moisture regimes. Finally, survival increased significantly in control and drought moisture regimes in response to the 10‐day soaking treatment. Results clearly demonstrated that soaking had significant effects on willow post success when evaluated across all soil moisture regimes. Posts subjected to the 10‐day soaking treatment consistently had greatest growth and biomass and displayed a doubling of the survival rate. Therefore, soaking willow cuttings before planting is a simple, inexpensive technique that may be used to bolster streambank restoration success.  相似文献   

16.
Water-table depth variations alter root growth response and may affect whole-plant growth in arid and semi-arid regions. We examined how root biomass allocation and root morphological traits affect the leaf physiological and morphological traits and whole-plant growth of Populus alba growing under different water tables. We exposed 1-year-old P. alba cuttings to contrasting soil–water conditions via water table changes in a greenhouse for 90 days. We examined relationships among net assimilation rate (NAR) and other growth components obtained from our published data for trees harvested every 30 days. Strongly negative correlations were found between RMR and root morphological traits. Root mass ratio had a strong negative relationship with LMR, and proportion of fine-root biomass per total root biomass was positively correlated with SLA and NAR. Both NAR and leaf area ratio were important determinants of variation in relative growth rate (RGR). Leaf mass ratio (LMR) and specific leaf area (SLA) were positively correlated with RGR; the correlation was stronger in the case of LMR. Along a water-table gradient, negative relationships between root growth responses are likely to indirectly influence RGR through changes in NAR, LMR, and SLA.  相似文献   

17.
The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17 degrees C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12 degrees C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17 degrees C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. There was little difference among species in tolerance of high-temperature extremes.  相似文献   

18.
Seedlings of nine southern Chilean trees were grown at three nutrient supply rates, to examine the roles of growth rate, biomass distribution and nutrient use traits in determining species natural distributions on resource gradients. Relative growth rate (RGR) showed no overall relationship with species site requirements, although RGR of fertile-site species tended to be more responsive to nutrient supply. In the low-nutrient treatment, infertility-tolerant Fitzroya cupressoides showed a higher RGR rank than a fertility-demanding species (Laurelia philippiana) which outgrew it substantially at the highest supply rate. This reversal of RGR ranks was associated with divergent nutrient use responses: at high nutrient supply both spp. had similar plant nitrogen concentrations (PNC), whereas at the low supply rate Fitzroya’s production of biomass per unit of assimilated N was twice that of Laurelia’s. However, this pattern does not appear to serve as a general explanation of the respective distributions of the study species, as RGR ranks of most species were unaltered by nutrient supply. At low nutrient availability, no clear differences in shoot:root ratio (SRR) were apparent between poor-site and fertile-site species. However, at high nutrient availability, SRR was markedly higher in the latter, resulting from differences in biomass allocation to stems (not leaves). Leaf area ratios (LAR) were higher in fertile-site species than in those tolerant of low fertility, because of differences in specific leaf area rather than leaf weight ratio. Very high LAR at high nutrient supply was characteristic of most shade-tolerant angiosperms, but not of shade-tolerant conifers. Although PNC showed no overall differences between poor- and fertile-site species, sensitivity of PNC to external supply rate was greatest in two infertility-tolerant conifers. In contrast, the angiosperm Weinmannia trichosperma, although tolerant of low fertility, responded to increased nutrient supply with greatly increased RGR and little change in PNC. Results show little trait convergence between conifers and angiosperms in adaptation both to shade and to infertile soils; i.e. fitness of different taxa in a given environment may hinge on different trait combinations. Received: 12 September 1995 /Accepted: 14 June 1996  相似文献   

19.
We report the relative abundance of inflorescence tissue feeders among three willow species (Salix integra, S. miyabeana and S. sachalinensis) with reference to the plant sexes. We found that (i) a total of 270 individuals belonging to six species and two orders were recorded from willow inflorescences; (ii) the abundance of Xanthia caterpillars differed across willow species and sexes; (iii) the abundance of weevil larvae differed across willow species; (iv) Gypsonoma bifasciata abundance was affected by sex and inflorescence size; and (v) Nemophora raddei was collected from a single female S. miyabeana tree. Although nitrogen content of inflorescences is not likely to affect the herbivory pattern of inflorescence tissue feeders, inflorescence size is likely to affect the abundance of Gypsonoma caterpillars.  相似文献   

20.
The effects of 0, 30, 60, and 90 mM NaCl, and 0 and 5 mM CaCl2 on certain parameters of photosynthesis and growth in alfalfa (Medicago sativa L. cv. Ghara yonjeh) plants were studied. The increasing NaCl concentration in the Hoagland nutrient solution decreased the contents of chlorophylls and the net photosynthetic rate, and increased the rate of respiration (RD) and CO2 compensation concentration in the leaves of treated plants. The contents of carotenoids (Car) were not significantly affected. The addition of 5 mM CaCl2 enhanced the RD and increased the Car contents in treated leaves. With the NaCl concentration in the culture medium increasing, the dry matter production in both root and shoot decreased, as well as the relative growth rate (RGR), net assimilation rate (NAR), and leaf area ratio (LAR). The addition of CaCl2 caused a partial elimination of the NaCl effects on the root and shoot, RGR and NAR, and it decreased the LAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号