首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

2.
3.
4.
We have characterized cDNAs coding for three Na,K-ATPase alpha subunit isoforms from the rat, a species resistant to ouabain. Northern blot and S1-nuclease mapping analyses revealed that these alpha subunit mRNAs are expressed in a tissue-specific and developmentally regulated fashion. The mRNA for the alpha 1 isoform, approximately equal to 4.5 kb long, is expressed in all fetal and adult rat tissues examined. The alpha 2 mRNA, also approximately equal to 4.5 kb long, is expressed predominantly in brain and fetal heart. The alpha 3 cDNA detected two mRNA species: a approximately equal to 4.5 kb mRNA present in most tissues and a approximately equal to 6 kb mRNA, found only in fetal brain, adult brain, heart, and skeletal muscle. The deduced amino acid sequences of these isoforms are highly conserved. However, significant differences in codon usage and patterns of genomic DNA hybridization indicate that the alpha subunits are encoded by a multigene family. Structural analysis of the alpha subunits from rat and other species predicts a polytopic protein with seven membrane-spanning regions. Isoform diversity of the alpha subunit may provide a biochemical basis for Na,K-ATPase functional diversity.  相似文献   

5.
6.
7.
We have used a gene transfer system to investigate the relationship between expression of the rat Na,K-ATPase alpha 1 subunit gene and ouabain-resistant Na,K-ATPase activity. A cDNA clone encoding the entire rat Na,K-ATPase alpha 1 subunit was inserted into the expression vector pSV2neo. This construct (pSV2 alpha 1) conferred resistance to 100 microM ouabain to ouabain-sensitive CV-1 cells. Hybridization analysis of transfected clones revealed the presence of both rat-specific and endogenous Na,K-ATPase alpha 1 subunit DNA and mRNA sequences. A single form of highly ouabain-sensitive 86Rb+ uptake was detected in CV-1 cells, whereas two distinct classes of ouabain-inhibitable uptake were observed in transfectants. One class exhibited the high ouabain sensitivity of the endogenous monkey Na,K-ATPase, while the second class showed the reduced ouabain sensitivity characteristic of the rodent renal Na,K-ATPase. Examination of the ouabain-sensitive, sodium-dependent ATPase activity of the transfectants also revealed a low affinity component of Na,K-ATPase activity characteristic of the rodent kidney enzyme. These results suggest that expression of the rat alpha 1 subunit gene is directly responsible for ouabain-resistant Na,K-ATPase activity in transfected CV-1 cells.  相似文献   

8.
Sánchez G  Blanco G 《Biochemistry》2004,43(28):9061-9074
The Na,K- and H,K-ATPases are plasma membrane enzymes responsible for the active exchange of extracellular K(+) for cytoplasmic Na(+) or H(+), respectively. At present, the structural determinants for the specific function of these ATPases remain poorly understood. To investigate the cation selectivity of these ATPases, we constructed a series of Na,K-ATPase mutants in which residues in the membrane spanning segments of the alpha subunit were changed to the corresponding residues common to gastric H,K-ATPases. Thus, mutants were created with substitutions in transmembrane domains TM1, TM4, TM5, TM6, TM7, and TM8 independently or together (designated TMAll). The function of each mutant was assessed after coexpression with the beta subunit in Sf-9 cells using baculoviruses. The enzymatic properties of TM1, TM7, and TM8 mutants were similar to the wild-type Na,K-ATPase, and while TM5 showed modest changes in apparent affinity for Na(+), TM4, TM6, and TMAll displayed an abnormal activity. This resulted in a Na(+)-independent hydrolysis of ATP, a 2-fold higher K(0.5) for Na(+) activation, and the ability to function at low pH. These results suggest a loss of discrimination for Na(+) over H(+) for the enzymes. In addition, TM4, TM6, and TMAll mutants exhibited a 1.5-fold lower affinity for K(+) and a 4-5-fold decreased sensitivity to vanadate. Altogether, these results provide evidence that residues in transmembrane domains 4 and 6 of the alpha subunit of the Na,K-ATPase play an important role in determining the specific cation selectivity of the enzyme and also its E1/E2 conformational equilibrium.  相似文献   

9.
10.
11.
12.
Interactions of rat FXYD4 (corticosteroid hormone-induced factor (CHIF)), FXYD2 (gamma), or FXYD1 (phospholemman (PLM)) proteins with rat alpha1 subunits of Na(+),K(+)-ATPase have been analyzed by co-immunoprecipitation and covalent cross-linking. In detergent-solubilized membranes from HeLa cells expressing both gamma and CHIF or CHIF and hemagglutinin A-tagged CHIF, mixed complexes of CHIF and gamma or CHIF and hemagglutinin A-tagged CHIF with alpha/beta subunits are undetectable. This implies that the alpha/beta/FXYD protomer is the major species in detergent solution. A lipid-soluble cysteine-cysteine bifunctional reagent, dibromobimane, cross-links CHIF to alpha in colonic membranes but not gamma or PLM to alpha in kidney or heart membranes, respectively. Sequence comparisons of the FXYD proteins suggested that Cys-49 in the trans-membrane segment of CHIF could be involved. In detergent-solubilized HeLa cell membranes, dibromobimane cross-links wild-type CHIF to alpha but not the C49F mutant, and also the corresponding F36C mutant but not wild-type gammab, and F48C but not wild-type PLM. C140S, C338A, C804A, and C966S mutants of the alpha subunit have been expressed. Only the C140S mutant prevents cross-linking with CHIF. The data demonstrated the proximity of trans-membrane segments of CHIF, gamma, and PLM to M2 of alpha. Molecular modeling is consistent with location of the trans-membrane segment of all FXYD proteins between M2, M6, and M9 and the proximity of Cys-49 of CHIF or Phe-36 of gamma with Cys-140 of M2. Cross-linking also demonstrated CHIF-alpha and CHIF-beta proximities in extra-membrane regions, similar to the evidence for gamma-alpha and gamma-beta cross-links.  相似文献   

13.
In epithelial MDCK cells, the Na,K-ATPase is co-localized with adherens junctions in all stages of monolayer formation starting from initiation of cell–cell contact. The Na,K-ATPase and adherens junction proteins stay partially co-localized even after internalization due to disruption of intercellular contacts by Ca2+ deprivation. Similar to adherens junction proteins, the Na,K-ATPase is resistant to extraction with non-ionic detergent, suggesting pump association with the cytoskeleton. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase β1 subunit and the endogenous α1 subunit is easily dissociated from the adherens junctions and cytoskeleton by detergent extraction. The MDCK cells in which half of the endogenous β1 subunits in the lateral membrane are substituted by unglycosylated β1 subunits display a slower rate of cell-to-cell contact formation and decreased ability to both spread over the surface and migrate. The lack of N-glycans in the Na,K-ATPase β1 subunit results in an impairment of mature cell–cell junctions as detected by an increase in the paracellular permeability of the MDCK cell monolayers and by a decrease in resistance of adherens junction proteins to extraction by a non-ionic detergent. Therefore the N-glycans of the Na,K-ATPase β1 subunit are important for retention of the pump at the sites of cell–cell contact. Moreover, they are important for the integrity and stability of cell–cell junctions in mature epithelia. In addition, N-glycans contribute to the formation of cell–cell contacts between surface-attached dispersed cells by mediating lamellipodia formation and stabilizing the newly formed adherens junctions.  相似文献   

14.
15.
In the present study we used LLC-PK1 cells, a porcine renal proximal tubular cell line, to investigate whether PI3 kinase activation was involved in the anti-apoptotic effect of ouabain, a specific inhibitor of Na,K-ATPase. Apoptosis was induced by actinomycin D (Act D, 5 microM) and assessed by appearance of hypodiploid nuclei and DNA fragmentation. Ouabain attenuated Act D-induced apoptotic response in a dose-dependent manner. Incubation in a low K(+) medium (0.1 mM) which is another way to decrease Na,K-ATPase activity also had anti-apoptotic effect. Both ouabain and low K(+) medium increased the PI3 kinase activity in p85 immunoprecipitates. Ouabain, as well as incubation in the low K(+) medium, also increased the phosphorylation of Akt. Inhibition of PI3 kinase by either wortmannin or LY294002 reversed the cytoprotective effect of ouabain. These data together indicate that inhibition of Na,K-ATPase activates PI3 kinase in LLC-PK1 cells which could then exert the cytoprotective effect.  相似文献   

16.
Several isoforms of Na+/H+ exchanger (NHE-1–5) have been identified. LLC-PK1 clone 4 (CL4) expresses the amiloride-sensitive type of NHE predominantly in the basolateral membrane, which is believed to be NHE-1. It is not clear whether CL4 expresses NHE in the apical membrane and which side of NHE is encoded by the NHE-1 mRNA. Using acidified CL4 cells on the filter membrane, we examined Na+-dependent pH recovery of the apical and basolateral membranes separately. Na+ applied to the apical membrane recovered cell pH. Na+-dependent pH recovery in the apical membrane was not inhibited by SITS, DIDS, or contralateral amiloride. Li+ but not K+, chol+, or NMG+ could replace Na+. These data are consistent with the presence of NHE in the apical membrane. Transfection with an antisense oligonucleotide corresponding to the 5′ terminal site of NHE-1 cDNA of CL4 decreased NHE activity in the basolateral membrane but not in the apical membrane. We conclude that CL4 expresses NHE activities in both apical and basolateralmembranes and that NHE-1 mRNA encodes NHE only in the basolateral membrane. J. Cell. Physiol. 171:318–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
We have shown that Na/K-ATPase interacts with Src. Here, we test the role of this interaction in H2O2-induced activation of Src and ERK. We found that exposure of LLC-PK1 cells to H2O2 generated by the addition of glucose oxidase into the culture medium activated Src and ERK1/2. It also caused a modest reduction in the number of surface Na/K-ATPases and in ouabain-sensitive Rb+ uptake. These effects of H2O2 seem similar to those induced by ouabain, a specific ligand of Na/K-ATPase, in LLC-PK1 cells. In accordance, we found that the effects of H2O2 on Src and ERK1/2 were inhibited in α1 Na/K-ATPase-knockdown PY-17 cells. Whereas expression of wild-type α1 or the A420P mutant α1 defective in Src regulation rescued the pumping activity in PY-17 cells, only α1, and not the A420P mutant, was able to restore the H2O2-induced activation of protein kinases. Consistent with this, disrupting the formation of the Na/K-ATPase/Src complex with pNaKtide attenuated the effects of H2O2 on the kinases. Moreover, a direct effect of H2O2 on Na/K-ATPase-mediated regulation of Src was demonstrated. Finally, H2O2 reduced the expression of E-cadherin through the Na/K-ATPase/Src-mediated signaling pathway. Taken together, the data suggest that the Na/K-ATPase/Src complex may serve as one of the receptor mechanisms for H2O2 to regulate Src/ERK protein kinases and consequently the phenotype of renal epithelial cells.  相似文献   

18.
The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K-ATPase alpha subunit, in determining the voltage and extracellular K+ (K+(o)) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the alpha1 subunit of sheep Na,K-ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37 degrees C). Na,K-pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K+(o) dependence similar to wild-type Na,K-ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K+(o) concentration that half-maximally activated Na,K-pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K-pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K+(o) affinity could be produced by mutations in the fifth transmembrane segment of the Na,K-ATPase with little effect on voltage-dependent properties of K+ transport. One interpretation of these results is that protein structures responsible for the kinetics of K+(o) binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K+(o) binding to the Na,K-ATPase.  相似文献   

19.
The alpha 5 beta 1, alpha 6 beta 4 and Mac-1 integrins all participate in the endocytotic cycle. By contrast, alpha 3 beta 1, alpha 4 beta 1 and LFA-1 do so much more slowly, or not at all, in the cell lines examined. This indicates that the alpha-chains appear to determine whether an integrin cycles or not, and that alpha 5 beta 1, alpha 6 beta 4 and Mac-1 can be brought to the leading edge of a moving cell by endocytosis and recycling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号