首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose differentiation-related protein (ADRP) is a major protein associated with lipid droplets in various types of cells, including macrophage-derived foam cells and liver cells. However, the role of ADRP in the processes of formation and regression of these cells is not understood. When J774 murine macrophages were incubated with either VLDL or oleic acid, their content of both ADRP and triacylglycerol (TG) increased 3- to 4-fold. Induction of ADRP during TG accumulation was also observed in oleic acid-treated HuH-7 human liver cells. Addition of triacsin C, a potent inhibitor of acyl-CoA synthase, for 6 h decreased the amount of TG in VLDL-induced foam cells and oleic acid-treated liver cells; it decreased the amount of ADRP protein in parallel, indicating the amount of ADRP reduced during regression of the lipid-storing cells. Addition of a proteasome inhibitor during triacsin C treatment abolished the ADRP decrease and accumulated polyubiquitinated ADRP. In addition, the proteasome inhibitor reversed not only the degradation of ADRP but also TG reduction by triacsin C. These results suggest that cellular amounts of ADRP and TG regulate each other and that the ubiquitin-proteasome system is involved in degradation of ADRP during regression of lipid-storing cells.  相似文献   

2.
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination.  相似文献   

3.
4.
Han Y  Cao H  Jiang J  Xu Y  Du J  Wang X  Yuan M  Wang Z  Xu Z  Chong K 《Plant physiology》2008,148(2):843-855
Root growth is mainly determined by cell division and subsequent elongation in the root apical area. Components regulating cell division in root meristematic cells are largely unknown. Previous studies have identified rice (Oryza sativa) ROOT ARCHITECTURE ASSOCIATED1 (OsRAA1) as a regulator in root development. Yet, the function of OsRAA1 at the cellular and molecular levels is unclear. Here, we show that OsRAA1-overexpressed transgenic rice showed reduced primary root growth, increased numbers of cells in metaphase, and reduced numbers of cells in anaphase, which suggests that OsRAA1 is responsible for limiting root growth by inhibiting the onset of anaphase. The expression of OsRAA1 in fission yeast also induced metaphase arrest, which is consistent with the fact that OsRAA1 functions through a conserved mechanism of cell cycle regulation. Moreover, a colocalization assay has shown that OsRAA1 is expressed predominantly at spindles during cell division. Yeast two-hybrid and pull-down assays, as well as a bimolecular fluorescence complementation assay, all have revealed that OsRAA1 interacts with a rice homolog of REGULATORY PARTICLE TRIPLE-A ATPASE4, a component that is involved in the ubiquitin pathway. Treating transgenic rice with specific inhibitors of the 26S proteasome blocked the degradation of OsRAA1 and increased the number of cells in metaphase. Mutation of a putative ubiquitination-targeting D-box (RGSLDLISL) in OsRAA1 interrupted the destruction of OsRAA1 in transgenic yeast. These results suggest that ubiquitination and proteasomic proteolysis are involved in OsRAA1 degradation, which is essential for the onset of anaphase, and that OsRAA1 may modulate root development mediated by the ubiquitin-proteasome pathway as a novel regulatory factor of the cell cycle.  相似文献   

5.
6.
7.
8.
The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. The aim of this study was to examine the cleavage of APP-CTFbeta by gamma-secretase in primary cortical neurons from transgenic mice engineered to express the human APP-CTFbeta sequence. Neurons were prepared from transgenic mouse cortex and proteins labelled by incubation with [35S]methionine and [35S]cysteine. Labelled APP-CTFbeta and Abeta were then immunoprecipitated with a monoclonal antibody (WO2) specific for the transgene sequences. Approximately 30% of the human APP-CTFbeta (hAPP-CTFbeta) was converted to human Abeta (hAbeta), which was rapidly secreted. The remaining 70% of the hAPP-CTFbeta was degraded by an alternative pathway. The cleavage of hAPP-CTFbeta to produce hAbeta was inhibited by specific gamma-secretase inhibitors. However, treatment with proteasome inhibitors caused an increase in both hAPP-CTFbeta and hAbeta levels, suggesting that the alternative pathway was proteasome-dependent. A preparation of recombinant 20S proteasome was found to cleave a recombinant cytoplasmic domain fragment of APP (APPcyt) directly. The study suggests that in primary cortical neurons, APP-CTFbeta is degraded by two distinct pathways, one involving gamma-secretase, which produces Abeta, and a second major pathway involving direct cleavage of APP-CTFbeta within the cytoplasmic domain by the proteasome. These results raise the possibility that defective proteasome function could lead to an increase in Abeta production in the AD brain.  相似文献   

9.
10.
11.
C-Abl is a nonreceptor tyrosine kinase that is tightly regulated in the cell. Genetic data derived from studies in flies and mice strongly support a role for Abl kinases in the regulation of the cytoskeleton (reviewed in [1,2]). C-Abl can be activated by several stimuli, including oxidative stress [3], DNA damage [4], integrin engagement [5], growth factors, and Src family kinases [6]. Structural alterations elicit constitutive activation of the c-Abl tyrosine kinase, leading to oncogenic transformation. While the mechanisms that activate c-Abl are beginning to be elucidated, little is known regarding the mechanisms that downregulate activated c-Abl. Here, we show for the first time that activated c-Abl is downregulated by the ubiquitin-dependent degradation pathway. Activated forms of c-Abl are more unstable than wild-type and kinase-inactive forms. Moreover, inhibition of the 26S proteasome leads to increased c-Abl levels in vitro and in cells, and activated c-Abl proteins are ubiquitinated in vivo. Significantly, inhibition of the 26S proteasome in fibroblasts increases the levels of tyrosine-phosphorylated, endogenous c-Abl. Our data suggest a novel mechanism for irreversible downregulation of activated c-Abl, which is critical to prevent the deleterious consequences of c-Abl hyperactivation in mitogenic and cytoskeletal pathways.  相似文献   

12.
Dihydrotestosterone (DHT) decreases rat liver alcohol dehydrogenase (ADH) due principally to an increased rate of degradation of the enzyme. The pathway of degradation of ADH was investigated. Exposure of hepatocytes in culture to lactacystin or to MG132, which are inhibitors of the ubiquitin-proteasome pathway of protein degradation, resulted in higher ADH. Furthermore, both lactacystin and MG132 prevented the decrease in ADH caused by DHT. By contrast, the lysosomal proteolytic inhibitors 3-methyladenine and leupeptin as well as inhibitors of the calcium-activated neutral protease calpain system had no effect on ADH in the absence or presence of DHT. ADH isolated by immunoprecipitation from hepatocytes exposed to DHT reacted specifically with anti-ubiquitin antibody. Ubiquitinated ADH was also demonstrated in hepatocytes exposed to MG132. The combination of DHT and MG132 resulted in more ubiquitinated ADH than exposure to either compound alone. These results suggest that the ubiquitin-proteasome pathway plays a role in the degradation of ADH and in the enhanced degradation of this enzyme by DHT.  相似文献   

13.
Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.  相似文献   

14.
15.
Familial hypercholesterolemia is a genetic disorder that results from various gene mutations, primarily within the LDL receptor (LDLR). Approximately 50% of the LDLR mutations are defined as class 2 mutations, with the mutant proteins partially or entirely retained in the endoplasmic reticulum. To determine the degradation pathway of the LDLR class 2 mutants, we examined the effects of inhibition of several potential pathways on the levels of the wild-type LDLR and its four representative class 2 mutants (S156L, C176Y, E207K, and C646Y) stably expressed in Chinese hamster ovary (CHO) cells. We found that proteasome inhibitors MG132 and lactacystin blocked the degradation of the LDLR mutants, but not that of the wild-type LDLR. Treatment of CHO cells with these proteasome inhibitors led to a significant accumulation of the mutants at steady state. Furthermore, cell surface levels of the LDLR mutants were significantly increased upon inhibition of the proteasome degradation pathway. In contrast to the proteasome inhibitors, inhibitors of trypsin-like proteases, chymotrypsin-like proteases, and lysosomal pathway inhibitors did not affect the levels of the LDLR mutants. Taken together, these data demonstrate that the proteasome is the principal degradation pathway for LDLR class 2 mutants.  相似文献   

16.
We identified the ORF YBR264c during the systematic sequencing of the Saccharomyces cerevisiae genome. It encodes a putative protein of 218 amino acids. We demonstrate here that the gene is indeed expressed and encodes a new Ypt in yeast. This protein specifically binds guanine nucleotides and interacts via its C-terminal end with the unique Rab GDP Dissociation Inhibitor (RabGDI). In accordance with a recent proposal, the gene is now designated YPT10. No mutant phenotype could be associated with inactivation of the gene. However, overexpression of YPT10 resulted in defects in growth; microscopic examination of such cells revealed an overabundance of vesicular and tubular structures, suggesting some alteration in the function of the Golgi apparatus. In addition, degradation of the Ypt10 protein, which possesses a PEST sequence, is shown to be dependent on proteasome activity. Received: 29 October 1998 / Accepted: 25 January 1999  相似文献   

17.
During mitosis, the Xenopus chromokinesin Kid (Xkid) provides the polar ejection forces needed at metaphase for chromosome congression, and its degradation is required at anaphase to induce chromosome segregation. Despite the fact that the degradation of Xkid at anaphase seems to be a key regulatory factor to induce chromosome movement to the poles, little is known about the mechanisms controlling this proteolysis. We investigated here the degradation pathway of Xkid. We demonstrate that Xkid is degraded both in vitro and in vivo by APC/Cdc20 and APC/Cdh1. We show that, despite the presence of five putative D-box motifs in its sequence, Xkid is proteolyzed in a D-box-independent manner. We identify a domain within the C terminus of this chromokinesin, with sequence GxEN, whose mutation completely stabilizes this protein by both APC/Cdc20 and APC/Cdh1. Moreover, we show that this degradation sequence acts as a transposable motif and induces the proteolysis of a GST-GXEN fusion protein. Finally, we demonstrate that both a D-box and a GXEN-containing peptides completely block APC-dependent degradation of cyclin B and Xkid, indicating that the GXEN domain might mediate the recognition and association of Xkid with the APC.  相似文献   

18.
19.
20.
NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号