首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Materials that enhance bone and cartilage regeneration promise to be valuable in both research and clinical applications. Both natural and synthetic polymers can be used to create scaffolds that support cells and incorporate cues which guide tissue repair. Recently, electrospinning, peptide self-assembly and biomineralisation have been employed to fabricate nanostructured scaffolds that better mimic the complex extracellular environment found within tissues, in vivo. The incorporation of peptide motifs recognised by cell receptors and the use of recombinant DNA technology have enabled the creation of scaffolds with new levels of biofunctionality. Advances in materials design will enhance our ability to create highly tailored cellular environments for bone and cartilage regeneration.  相似文献   

2.
Cells with the desired phenotype and number are critical for regenerative medicine and tissue engineering. Uniparental parthenogenetic embryonic stem cells (pESCs) share fundamental properties with embryonic stem cells. This study aims to determine the viability of pESC-based tissue engineering for bone and cartilage reconstruction. The mouse pESCs were cultured in suspension to form embryoid bodies. An adherent cultivation approach was employed to obtain parthenogenetic embryonic mesenchymal stem cells (pMSCs) from the embryoid bodies. Then, the pMSCs were cultured in conditional media to differentiate into osteogenic and chondrogenic lineages. The pESC-derived osteoblasts and chondroblasts were seeded into coral and sodium alginate scaffolds, respectively. The cell-seeded scaffolds were implanted into dorsal subcutaneous pockets of nude mice to evaluate ectopic reconstruction of bone and cartilage. We demonstrated that pESCs display the capacity to differentiate into all three germ layers. The generated pMSCs were able to differentiate into osteogenic and chondrogenic lineages, which survived well after seeding into coral and alginate acid scaffolds. Six weeks after cell-scaffold implantation, gross inspection and histological examination revealed that ectopic bone and cartilage tissues had successfully regenerated in the specimen. According to the findings of this study, pESC derivatives have a high potential for bone and cartilage regeneration.  相似文献   

3.
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
Recombinant human bone morphogenetic proteins (rhBMPs) have been extensively investigated for developing therapeutic strategies aimed at the restoration and treatment of orthopaedic as well as craniofacial conditions. In this first part of the review, we discuss the rationale for the necessary use of carrier systems to deliver rhBMP-2 and rhBMP-7 to sites of bone tissue regeneration and repair. General requirements for growth factor delivery systems emphasizing the distinction between localized and release-controlled delivery strategies are presented highlighting the current limitations in the development of an effective rhBMP delivery system applicable in clinical bone tissue engineering.  相似文献   

7.
8.
Arthritis is a multifactorial disease for which current therapeutic intervention with high efficacy remains challenging. Arthritis predominately affects articular joints, and cartilage deterioration and inflammation are key characteristics. Current therapeutics targeting inflammatory responses often cause severe side effects in patients because of the systemic inhibition of cytokines or other global immunosuppressive activities. Furthermore, a lack of primary response or failure to sustain a response to treatment through acquired drug resistance is an ongoing concern. Nevertheless, treatments such as disease-modifying anti-rheumatic drugs, biological agents, and corticosteroids have revealed promising outcomes by decreasing pain and inflammation in patients and in some cases reducing radiographic progression of the disease. Emerging and anecdotal therapeutics with anti-inflammatory activity, alongside specific inhibitors of the A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 repeats (ADAMTS) cartilage-degrading aggrecanases, provide promising additions to current arthritis treatment strategies. Thus, it is paramount that treatment strategies be optimized to increase efficacy, reduce debilitating side effects, and improve the quality of life of patients with arthritis. Here, we review the current strategies that attempt to slow or halt the progression of osteoarthritis and rheumatoid arthritis, providing an up-to-date summary of pharmaceutical treatment strategies and side effects. Importantly, we highlight their potential to indirectly regulate ADAMTS aggrecanase activity through their targeting of inflammatory mediators, thus providing insight into a mechanism by which they might inhibit cartilage destruction to slow or halt radiographic progression of the disease. We also contrast these with anecdotal or experimental administration of statins that could equally regulate ADAMTS aggrecanase activity and are available to arthritis sufferers worldwide. Finally, we review the current literature regarding the development of synthetic inhibitors directed toward the aggrecanases ADAMTS4 and ADAMTS5, a strategy that might directly inhibit cartilage destruction and restore joint function in both rheumatoid arthritis and osteoarthritis.  相似文献   

9.
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.  相似文献   

10.
Damaged cartilage tissue has no functional replacement alternatives and current therapies for bone injury treatment are far from being the ideal solutions emphasizing an urgent need for alternative therapeutic approaches for osteochondral (OC) regeneration. The tissue engineering field provides new possibilities for therapeutics and regeneration in rheumatology and orthopaedics, holding the potential for improving the quality of life of millions of patients by exploring new strategies towards the development of biological substitutes to maintain, repair and improve OC tissue function. Numerous studies have focused on the development of distinct tissue engineering strategies that could result in promising solutions for this delicate interface. In order to outperform currently used methods, novel tissue engineering approaches propose, for example, the design of multi-layered scaffolds, the use of stem cells, bioreactors or the combination of clinical techniques.  相似文献   

11.
The induction of bone formation requires three parameters that interact in a highly regulated process: soluble osteoinductive signals, capable responding cells, and a supporting matrix substratum or insoluble signal. The use of recombinant and naturally derived bone morphogenetic proteins and transforming growth factor beta(s) (TGF-beta(s)) has increased our understanding of the functions of these morphogens during the induction of endochondral bone formation. In addition, growing understanding of the cellular interactions of living tissues with synthetic biomaterials has led to the in vivo induction of bone formation using porous biomimetic matrices as an alternative to the use of autografts for bone regeneration. This review outlines the basis of bone tissue engineering by members of the TGF-beta superfamily, focusing on their delivery systems and the intrinsic induction of bone formation by specific biomimetic matrices with a defined geometry.  相似文献   

12.
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.  相似文献   

13.
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA;therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs;cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.  相似文献   

14.
15.
16.
Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.  相似文献   

17.
Limitations in current nerve regeneration techniques have stimulated the development of various approaches to mimic the extrinsic cues available in the natural nerve regeneration environment. Biomaterials approaches modulate the microenvironment of a regenerating nerve through tailored presentation of signaling molecules, creating physical and biochemical guidance cues to direct axonal regrowth across nerve lesion sites. Cell-based approaches center on increasing the neurotrophic support, adhesion guidance and myelination capacity of Schwann cells and other alternative cell types to enhance nerve regrowth and functional recovery. Recent advances in presenting directional guidance cues in nerve guidance conduits and improving the regenerative outcomes of cell delivery provide inspirations to engineering the next generation of nerve repair solutions.  相似文献   

18.
19.
The use of autologous chondrocyte implantation (ACI) and its further development combining autologous chondrocytes with bioresorbable matrices may represent a promising new technology for cartilage regeneration in orthopaedic research. Aim of our study was to evaluate the applicability of a resorbable three-dimensional polymer of pure polyglycolic acid (PGA) for the use in human cartilage tissue engineering under autologous conditions. Adult human chondrocytes were expanded in vitro using human serum and were rearranged three-dimensionally in human fibrin and PGA. The capacity of dedifferentiated chondrocytes to re-differentiate was evaluated after two weeks of tissue culture in vitro and after subcutaneous transplantation into nude mice by propidium iodide/fluorescein diacetate (PI/FDA) staining, scanning electron microscopy (SEM), gene expression analysis of typical chondrocyte marker genes and histological staining of proteoglycans and type II collagen. PI/FDA staining and SEM documented that vital human chondrocytes are evenly distributed within the polymer-based cartilage tissue engineering graft. The induction of the typical chondrocyte marker genes including cartilage oligomeric matrix protein (COMP) and cartilage link protein after two weeks of tissue culture indicates the initiation of chondrocyte re-differentiation by three-dimensional assembly in fibrin and PGA. Histological analysis of human cartilage tissue engineering grafts after 6 weeks of subcutaneous transplantation demonstrates the development of the graft towards hyaline cartilage with formation of a cartilaginous matrix comprising type II collagen and proteoglycan. These results suggest that human polymer-based cartilage tissue engineering grafts made of human chondrocytes, human fibrin and PGA are clinically suited for the regeneration of articular cartilage defects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号