首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We transfected COS cells with expression vectors for the wild-type G protein alpha i1 subunit (pWT) and for mutated alpha i1 subunits, including the nonmyristylated glycine 2 to alanine mutant (pGA) and mutants in which the carboxyl termini of pWT and pGA were changed from CGLF to CVLS (pCVLS and pGA-CVLS, respectively). Immunoblot analysis of transfected COS cells with an antibody to residues 159-168 of the alpha i1 protein indicated that all four proteins were expressed. Unlike the WT and GA proteins, both CVLS mutant proteins failed to react with an antibody specific for the carboxyl terminus and failed to undergo pertussis toxin-catalyzed ADP-ribosylation. Analysis of COS cell lysates after [3H]mevalonic acid labeling indicated that specific incorporation of radioactivity occurred only in the alpha i1 subunits with the CVLS mutation. Immuno-precipitation of COS cell fractions after labeling with [35S]methionine indicated that both WT and CVLS mutant proteins were localized predominantly in the particulate fraction, whereas GA and GA-CVLS mutant proteins were found primarily in the soluble fraction. These results directly demonstrate that the carboxyl-terminal sequence, CGLF, is incapable of leading to isoprenylation but that alteration of two residues (glycine to valine, phenylalanine to serine) is sufficient to promote isoprenylation.  相似文献   

2.
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated.  相似文献   

3.
C Volker  P Lane  C Kwee  M Johnson  J Stock 《FEBS letters》1991,295(1-3):189-194
Members of the Ras superfamily of small GTP-binding proteins, gamma-subunits of heterotrimeric G proteins and nuclear lamin B are subject to a series of post-translational modifications that produce prenylcysteine methylester groups at their carboxyl termini. The thioether-linked polyisoprenoid substituent can be either farnesyl (C15) or geranylgeranyl (C20). Small molecule prenylcysteine derivatives with either the C15 or C20 modification, such as N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC), S-trans,trans-farnesylthiopropionate (FTP), as well as the corresponding geranylgeranyl derivatives (AGGC and GGTP) are substrates for the carboxyl methyltransferase. Saccharomyces cerevisiae ste14 mutants that lack RAS and a-factor carboxyl methyltransferase activity are also unable to methylate farnesyl and geranylgeranylcysteine derivatives. Moreover, C20-substituted cysteine analogs directly compete for carboxyl methylation with the C15-substituted cysteine analogs and vice versa. Finally, AGGC is even more effective than AFC as an inhibitor of Ras carboxyl methylation, despite the fact that Ras is methylated at a farnesylcysteine rather than a geranylgeranylcysteine residue.  相似文献   

4.
Protein isoprenylation in suspension-cultured tobacco cells.   总被引:9,自引:1,他引:8       下载免费PDF全文
Many mammalian and yeast proteins, including small ras-like GTP binding proteins, heterotrimeric G protein gamma subunits, and nuclear lamins, have been shown to be covalently linked to isoprenoid derivatives of mevalonic acid. Isoprenylation of these proteins is required for their assembly into membranes and, hence, for their biological activity. In this report, it is shown that cultured tobacco cells, when pretreated with an inhibitor of endogenous mevalonic acid synthesis (lovastatin), incorporate radioactivity from 14C-mevalonic acid into proteins. Most of these proteins are membrane associated, and many are similar in mass to mammalian ras-like GTP binding proteins and nuclear lamins. Furthermore, it is shown that tobacco cell extracts catalyze the transfer of radioactivity from 3H-farnesyl pyrophosphate and 3H-geranylgeranyl pyrophosphate to protein substrates in vitro. These studies indicate the presence of at least two distinct prenyl:protein transferases in tobacco extracts: one that utilizes farnesyl pyrophosphate and preferentially modifies a substrate protein with a CAIM carboxy terminus (farnesyl:protein transferase) and one that utilizes geranylgeranyl pyrophosphate and preferentially modifies a substrate protein with a CAIL carboxy terminus (geranylgeranyl:protein transferase type I). This work provides a basis for future work on the role of protein isoprenylation in plant cell growth, signal transduction, and membrane biogenesis.  相似文献   

5.
While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.  相似文献   

6.
The membrane-binding domain of a 23-kDa G-protein is carboxyl methylated   总被引:3,自引:0,他引:3  
We have purified to homogeneity a 23-kDa protein from bovine brain membranes using [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding as an assay. GTP gamma S binding to the purified protein is inhibited by GDP, GTP, and GTP analogs but not by cGMP, GMP, or adenine nucleotides, consistent with the nucleotide-binding behavior of members of the family of GTP-binding regulatory proteins. On addition of the methyl donor S-adenosyl-L-methionine and a methyltransferase present in bovine brain membranes, the purified 23-kDa G-protein is carboxyl methylated. When subjected to limited tryptic proteolysis, the 23-kDa protein is converted to a 22-kDa major fragment with concomitant release of a carboxyl methylated protein fragment of 1 kDa. Furthermore, when the cleaved protein is reconstituted with stripped bovine brain membranes, the small carboxyl-methylated fragment but not the 22-kDa major fragment is found to reassociate with the membranes. These results indicate that the site of carboxyl methylation and the region responsible for membrane anchoring, most likely, are localized to a small region at the carboxyl terminus. It is attractive to speculate that carboxyl methylation and membrane anchoring are interrelated processes and play key roles in the function of this small G-protein.  相似文献   

7.
Soluble forms of transforming growth factor-alpha (TGF alpha) are derived by proteolytic processing of an integral membrane glycoprotein precursor (pro TGF alpha). Previous studies indicated that phorbol ester-induced cleavage of pro TGF alpha in CHO cells is dependent on the presence of a valine residue located at the carboxyl terminus of the precursor's cytoplasmic domain. We reassessed this requirement with epitope-tagged constructs introduced into transformed rat liver epithelial cells that normally express and process TGF alpha. We found that pro TGF alpha mutants lacking the terminal valine residues showed greatly reduced maturation to the fully glycosylated form. Additionally, they were present at substantially reduced levels on the cell surface and, instead, accumulated in the endoplasmic reticulum. Consistent with these results, enzyme-linked immunosorbent assay (ELISA) and Western blot analyses revealed little or no soluble TGF alpha in medium conditioned by cells expressing the mutant constructs. Finally, a truncated pro TGF alpha mutant lacking most of the cytoplasmic domain but retaining a carboxyl-terminal valine was processed and cleaved in a near-normal manner. These results, some of which were reproduced in CHO cells, indicate that the predominant effect of the carboxyl-terminal valines is to ensure normal maturation and routing of the precursor.  相似文献   

8.
The prenylation of proteins.   总被引:16,自引:0,他引:16  
The prenylated proteins represent a newly discovered class of post-translationally modified proteins. The known prenylated proteins include the oncogene product p21ras and other low molecular weight GTP-binding proteins, the nuclear lamins, and the gamma subunit of the heterotrimeric G proteins. The modification involves the covalent attachment of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) isoprenoid moiety in a thioether linkage to carboxyl terminal cysteine. The nature of the attached substituent is dependent on specific sequence information in the carboxyl terminus of the protein. In addition, prenylation entrains other posttranslational modifications forming a reaction pathway. In this article, we review our current understanding of the biochemical reactions involved in prenylation and discuss the possible role of this modification in the control of cellular functions such as protein maturation and cell growth.  相似文献   

9.
Lipid modifications that may be introduced into several subunits of G proteins were explored by in vitro translation of recombinant mRNAs in reticulocyte lysates. In agreement with studies by others, myristic acid was incorporated into alpha i's and alpha o, but not alpha s, beta, or gamma's. In contrast, mevalonate (Mev) was incorporated only into gamma-subunits. Both, the gamma-subunit of transducin (gamma T) and that of other G proteins (gamma G) were modified by the lysates but with different characteristics. Labeled gamma T was unstable and was rapidly proteolyzed. Labeled gamma G was stable. The Mev-derivative in gamma G was sensitive to methyliodide and, after cleavage and chromatographic analysis, comigrated with the C20 polyisoprenol geranylgeraniol. This indicated that gamma G had been geranylgeranylated and that this polyisoprenoid was attached to the protein through a thioether linkage. It is thought that polyisoprenylation is defined by the COOH-terminal sequence Cys-A-A-X, where A is an aliphatic acid and X is any amino acid. Replacement by mutation of the Cys of the COOH-terminal -Cys-Ala-Ile-Leu sequence of gamma G with Ser abolished Mev incorporation, suggesting this Cys as the site of attachment of the geranylgeranyl moiety. Yet, Mev incorporation was less than 10% as much into gamma G with the Cys-A-A-X sequence -Cys-Ala-Ile-Trp. Consistent with geranylgeranylation, the C15 farnesyl moiety of farnesyl pyrophosphate was not incorporated into gamma G unless the incubations were fortified with Mev. In contrast, the farnesyl moiety was incorporated in an Mev-independent manner into gamma T (COOH terminus: -Cys-Val-Ile-Ser) and c-Ha-ras (COOH terminus: -Cys-Val-Leu-Ser) which are both farnesylated rather than geranylgeranylated. Thus, 1) separate enzymes appear to be involved in transferring farnesyl and geranylgeranyl groups to proteins, 2) structural factors other than the CAAX box contribute to the activity of the polyisoprenylating enzymes, and 3) this type of lipidation may be part of a proteolytic signaling system. Polyisoprenylation, which increases hydrophobicity of the derivatized protein, may play a role in anchoring not only ras but also G proteins to membranes.  相似文献   

10.
Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.  相似文献   

11.
Posttranslational prenylation of proteins synthesized as soluble precursors enhances their hydrophobicity and enables them to bind biological membranes. These modifications consist in the attachment of a C15 farnesyl or a C20 geranylgeranyl moiety to the cysteine residue(s) of proteins bearing CAAX, CC or CXC C-terminal sequences (where C = cysteine, A = aliphatic residue and X = any amino-acid), such as proteins of the ras superfamily, gamma subunits of heterotrimetric G proteins, lamin B as well as yeast mating factor a. A farnesyl transferase (FTase) and two distinct geranylgeranyl transferases (GGTases I and II) have been recently identified. FTase and GGTase I modify proteins containing a C-terminal CAAX motif; such a sequence is necessary and sufficient for recognition by the enzymes. The nature of the fourth residue determines the nature of the modification: when X is a serine, a methionine or a phenylalanine, the protein is farnesylated, whereas the presence of a leucine residue results in the attachment of a geranylgeranyl group. Both these enzymes are alpha beta heterodimers; their purification, molecular cloning of their coding sequences as well as mutational studies in yeast have shown that they share a common alpha subunit, and that their beta subunits exhibit a significant level of sequence similarity. GGTase II modifies ras-related proteins exhibiting CC and CXC C-terminal sequences; the enzyme as well as its recognition motif are yet largely uncharacterized.  相似文献   

12.
Mondal MS  Wang Z  Seeds AM  Rando RR 《Biochemistry》2000,39(2):406-412
The activities of small G-proteins are in part regulated by their interactions with GDI proteins. This binding is thought to be dependent on the C-terminal isoprenoid modification (geranylgeranyl or farnesyl) of these proteins. G-proteins are generally isoprenylated/methylated at their C-terminal cysteine residues. A quantitative fluorescence assay is reported here to evaluate the specificity of binding of rhoGDI. A rhodamine-labeled geranylgeranylated/methylated cysteine derivative is used to measure its binding to rhoGDI. Saturable binding in the low micromolar range is found with various geranylgeranylated/farnesylated analogues. Interestingly, the carboxymethylated derivatives bound significantly better than their free acid counterparts, suggesting that the state of methylation of the analogues is important for binding. The binding is also selective with respect to isoprenoid. Analogues containing hydrophobic modifications other than geranylgeranyl or farnesyl do not bind with significant affinities. These data demonstrate a substantial degree of specificity in the binding of isoprenoids to a protein important in signal transduction.  相似文献   

13.
Farnesylation of Ras proteins is necessary for transforming activity. Although farnesyl transferase inhibitors show promise as anticancer agents, prenylation of the most commonly mutated Ras isoform, K-Ras4B, is difficult to prevent because K-Ras4B can be alternatively modified with geranylgeranyl (C20). Little is known of the mechanisms that produce incomplete or inappropriate prenylation. Among non-Ras proteins with CaaX motifs, murine guanylate-binding protein (mGBP1) was conspicuous for its unusually low incorporation of [(3)H]mevalonate. Possible problems in cellular isoprenoid metabolism or prenyl transferase activity were investigated, but none that caused this defect was identified, implying that the poor labeling actually represented incomplete prenylation of mGBP1 itself. Mutagenesis indicated that the last 18 residues of mGBP1 severely limited C20 incorporation but, surprisingly, were compatible with farnesyl modification. Features leading to the expression of mutant GBPs with partial isoprenoid modification were identified. The results demonstrate that it is possible to alter a protein's prenylation state in a living cell so that graded effects of isoprenoid on function can be studied. The C20-selective impairment in prenylation also identifies mGBP1 as an important model for the study of substrate/geranylgeranyl transferase I interactions.  相似文献   

14.
Within each hemidesmosome, alpha6beta4 integrin plays a crucial role in hemidesmosome assembly by binding to laminin-5 in the basement membrane zone of epithelial tissue. Recent analyses have implicated "specificity-determining loops" (SDLs) in the I-like domain of beta integrin in regulating ligand binding. Here, we investigated the function of an SDL-like motif within the extracellular I-like domain of beta4 integrin. We generated point mutations within the SDL of beta4 integrin tagged with green fluorescent protein (GFP-beta4K150A and GFP-beta4Q155L). We also generated a mutation within the I-like domain of the beta4 integrin, lying outside the SDL region (GFP-beta4V284E). We transfected constructs encoding the mutated beta4 integrins and a GFP-conjugated wild type beta4 integrin (GFP-beta4WT) into 804G cells, which assemble hemidesmosomes, and human endothelial cells, which express little endogenous beta4 integrin. In transfected 804G cells, GFP-beta4WT and GFP-beta4V284E colocalize with hemidesmosome proteins, whereas hemidesmosomal components in cells expressing GFP-beta4K150A and GFP-beta4Q155L are aberrantly localized. In endothelial cells, GFP-beta4WT and mutant proteins are co-expressed at the cell surface with alpha6 integrin. When transfected endothelial cells are plated onto laminin-5 matrix, GFP-beta4WT and GFP-beta4V284E localize with laminin-5, whereas GFP-beta4K150A and GFP-beta4Q155L do not. GFP-beta4WT and GFP-beta4V284E expressed in endothelial cells associate with the adaptor protein Shc when the cells are stimulated with laminin-5. However, GFP-beta4K150A and GFP-beta4Q155L fail to associate with Shc even when laminin-5 is present, thus impacting downstream signaling. These results provide evidence that the SDL segment of the beta4 integrin subunit is required for ligand binding and is involved in outside-in signaling.  相似文献   

15.
The role of the carboxyl terminus in ClC chloride channel function   总被引:4,自引:0,他引:4  
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.  相似文献   

16.
J Rine  S H Kim 《The New biologist》1990,2(3):219-226
Intermediates of the cholesterol biosynthetic pathway are covalently attached to a number of eukaryotic proteins, including the Ras oncoprotein. Ras protein is post-translationally processed at its carboxyl terminus in three steps, resulting in a COOH-terminal cysteine residue to which a polyisoprenoid moiety, probably farnesyl, is attached in a thioether linkage. Polyisoprenylation of Ras protein is required for its membrane association and for the oncogenicity of mutant forms of the protein. Inhibition of polyisoprenylation may offer a route by which Ras-mediated tumors can be pharmacologically suppressed. Other proteins that are polyisoprenylated include nuclear lamin B, fungal mating factors, and subunits of trimeric guanine nucleotide-binding proteins. A consensus sequence for polyisoprenylation (Cys-aliphatic-aliphatic-X) has been identified at the COOH-terminus of modified proteins. Recent evidence indicates that proteins can be modified by several different polyisoprenoids.  相似文献   

17.
The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine -3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.  相似文献   

18.
19.
To delineate domains essential for G-protein coupling in angiotensin II type 1 receptor (AT1), we mutated the receptor cDNA in the putative cytosolic regions and determined consequent changes in the effect of GTP analogs on angiotensin II (Ang II) binding and in inositol trisphosphate production in response to Ang II. Polar residues in targeted areas were replaced by small neutral residues. Mutations in the second cytosolic loop, carboxy terminal region of the third cytosolic loop or deletional mutation in the carboxyl terminal tail simultaneously abolished both the GTP-induced shift to the low affinity form and Ang II-induced stimulation of inositol trisphosphate production. These results suggest that polar residues in the second cytosolic loop, the carboxy terminal region of the third cytosolic loop, and the carboxy terminal cytosolic tail are important for G-protein coupling of AT1 receptor.  相似文献   

20.
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus (Huang et al., 2000). The GTPase-activating protein (GAP) in the cytosol fraction was significantly expressed and degraded, compared to untransformed cells on the western blot. To understand this in more detail, the interaction of the bacterially expressed shrimp Ras (S-Ras) with GAP was investigated using GAP purified from mouse brains. SDS-polyacrylamide gel electrophoresis revealed the monomers of the purified GAP to have a relative mass of 65,000. Since the purified GAP was bound to the Ras conjugated affinity sepharose column with high affinity and its GTP hydolysis activity upon binding with tubulin was suppressed, the purified enzyme was concluded to be neurofibromin-like. The purified GAP enhanced the intrinsic GTPase activity of the S-Ras, to convert it into the inactive GDP-bound form, in agreement with findings for GTP-bound K(B)-Ras in vitro. To compare the effects between isoprenoids and GAP on the GTP-hydrolysis of Ras, we applied the GTP-locked shrimp mutant S-Ras(Q(61)K) and GTP-locked rat mutant K(B)-ras(Q(61)K). Radioassay studies showed that geranylgeranyl pyrophosphate at microg level catalyzed the GTP hydrolysis of S-Ras(Q(61)K) and K(B)-ras(Q(61)K) competently, but not farnesyl pyrophosphate or the purified GAP. The present study provides the view that the geranylgeranyl pyrophosphate at carboxyl terminal CAAX assists GTP hydrolysis to Ras proteins probably in a manner similar to the substrate assisted catalysis in GTPase mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号