首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used two strains of tomato leaf curl virus from New Delhi to investigate specificity in replication of their cognate genomes. The strains share 94% sequence identity and are referred to as severe and mild on the basis of symptoms on tomato and tobacco. Replication assays in tobacco protoplasts and plants showed that a single amino acid change, Asn10 to Asp in the N terminus of Rep protein, determines specificity for replication of the two strains based upon its interaction with the origin of replication (ori) sequences. The change of Asp10 to Asn in Rep protein of the mild strain coupled with point mutations at the 3rd and 10th nucleotides of the 13-mer binding site altered its replication ability, resulting in increased levels of virus accumulation. Similarly, changing Asn10 to Asp in Rep protein of the severe strain impaired replication of the virus and altered its severe phenotype in plants. Site-directed mutations made in ori and Asn10 of Rep protein suggested that Asn10 recognizes the third base pair of the putative binding site sequence GGTGTCGGAGTC in the severe strain.  相似文献   

2.
The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid ofAgrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2–5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation,L. chilense LA1969 andL. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars.The Hebrew University of Jerusalem, Faculty of Agriculture, Department of Field and Vegetable Crops  相似文献   

3.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

4.
To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.  相似文献   

5.
To discover genes involved in tomato resistance to Tomato yellow leaf curl virus (TYLCV), we previously compared cDNA libraries from susceptible (S) and resistant (R) tomato lines. Among the genes preferentially expressed in R plants and upregulated by TYLCV infection was a gene encoding a lipocalin-like protein. This gene was termed Solanum lycopersicum virus resistant/susceptible lipocalin (SlVRSLip). The SlVRSLip structural gene sequence of R and S plants was identical. SlVRSLip was expressed in leaves during a 15-day window starting about 40?days after sowing (20?days after planting). SlVRSLip was upregulated by Bemisia tabaci (the TYLCV vector) feeding on R plant leaves, and even more strongly upregulated following whitefly-mediated TYLCV inoculation. Silencing of SlVRSLip in R plants led to the collapse of resistance upon TYLCV inoculation and to a necrotic response along the stem and petioles accompanied by ROS production. Contrary to previously identified tomato lipocalin gene DQ222981, SlVRSLip was not regulated by cold, nor was it regulated by heat or salt. The expression of SlVRSLip was inhibited in R plants in which the hexose transporter gene LeHT1 was silenced. In contrast, the expression of LeHT1 was not inhibited in SlVRSLip-silenced R plants. Hence, in the hierarchy of the gene network conferring TYLCV resistance, SlVRSLip is downstream of LeHT1. Silencing of another gene involved in resistance, a Permease-I like protein, did not affect the expression of SlVRSLip and LeHT1; expression of the Permease was not affected by silencing SlVRSLip or LeHT1, suggesting that it does not belong to the same network. The triple co-silencing of SlVRSLip, LeHT1 and Permease provoked an immediate cessation of growth of R plants upon infection and the accumulation of large amounts of virus. SlVRSLip is the first lipocalin-like gene shown to be involved in resistance to a plant virus.  相似文献   

6.
One of the most severe diseases of cultivated tomato worldwide is caused by tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci. Here we describe the application of antisense RNAs to interfere with the disease caused by TYLCV. The target of the antisense RNA is the rare messenger RNA of the Rep protein, encoded by the C1 gene. Transgenic Nicotiana benthamiana plants expressing C1 antisense RNA were obtained and shown to resist infection by TYLCV. Some of the resistant lines are symptomless, and the replication of challenge TYLCV almost completely suppressed. The transgenes mediating resistance were shown to be effective through at least two generations of progeny.  相似文献   

7.
Geminiviruses Associated with Diseased Tomatoes in Cuba   总被引:2,自引:0,他引:2  
Tomato plants displaying symptoms of yellowing and leaf curling were analysed for the presence of geminiviruses. Two distinct geminiviruses were present in the plants studied. One had a genome size and coat protein gene sequence similar to the Israeli strain of tomato yellow leaf curl virus (TYLCV), while the other had a smaller genome size than TYLCV that could not be amplified using primers specific for Israeli TYLCV. The presence of the Israeli strain of TYLCV has been reported in other Caribbean islands, but not in Southern Florida (USA) which is close to those islands where TYLCV has been detected. This suggests that the introduction of the Israeli strain of TYLCV to the Caribbean area may have occurred within recent times.  相似文献   

8.
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV‐infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV‐ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV‐free ones. In contrast, TYLCV‐ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV‐ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV‐ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.  相似文献   

9.
Plants of 25 wild Lycopersicon accessions were screened in the greenhouse for resistance to the whitefly-borne tomato yellow leaf curl virus (TYLCV). High levels of resistance were detected in 7 of 9 accessions of L. peruvianum and in all 5 accessions of L. chilense tested. In contrast, plants of 7 accessions of L. hirsutum and 3 of 4 accessions of L. pimpinellifolium were highly susceptible. Plants of accession CIAS 27 (L. pimpinellifolium) showed moderate resistance to TYLCV.  相似文献   

10.
11.
12.
Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics.  相似文献   

13.
14.
The occurrence of Tomato yellow leaf curl virus (TYLCV; genus Begomovirus, family Geminiviridae) in the major tomato‐growing areas of Iran was determined using TAS‐ELISA and PCR. The nucleotide sequences of the coat protein (CP) gene and intergenic region (IR) of eight Iranian isolates were determined. CP nucleotide identities among the Iranian isolates were 96–98%, and showed 94–96% identity with TYLCV‐IR [IR:Ira:98] and TYLCV‐IL [IL:Reo:86]. However, they showed low identity (68–69%) with ToLCIRV‐[IR:Ira]. Sequence analyses of IR indicated that seven Iranian isolates had sequence identity of 93–100% with each other, and 76% identity with the Jiroft isolate; identities of 75–79% with TYLCV‐IR[IR:Ira:98] were observed in every case, and 59–62% identity with ToLCIRV‐[IR:Ira]. The IR nucleotide sequences of Iranian isolates showed 92–93% identity with TYLCV‐IL[IL:Reo:86], except the Jiroft isolate (75%). The CP and IR sequence analyses suggested that eight Iranian TYLCV isolates probably differ from ToLCIRV‐[IR:Ira]. Based on IR sequence comparisons and phylogenetic analyses, the Iranian isolates were divided into two groups. The first major group (A), consists of seven virus isolates, was most closely related to TYLCV‐IL[IL:Reo:86], and relatively divergent from TYLCV‐IR [IR:Ira:98] and ToLCIRV‐[IR:Ira]. However, the Jiroft isolate from group B did not show high similarity with TYLCV‐IR[IR:Ira:98], ToLCIRV‐[IR:Ira], and TYLCV‐IL[IL:Reo:86], suggesting that the isolate may be a divergent variant. The differences are in a range that suggests different strains or species from TYLCV‐IR[IR:Ira:98] and ToLCIRV‐[IR:Ira] are probably associated with tomato yellow leaf curl disease in Iran.  相似文献   

15.
Tomato yellow leaf curl virus (TYLCV) is devastating to tomato (Solanum lycopersicum) crops and resistant cultivars are highly effective in controlling the disease. The breeding line TY172, originating from Solanum peruvianum, is highly resistant to TYLCV. To map quantitative trait loci (QTLs) controlling TYLCV resistance in TY172, appropriate segregating populations were analyzed using 69 polymorphic DNA markers spanning the entire tomato genome. Results show that TYLCV resistance in TY172 is controlled by a previously unknown major QTL, originating from the resistant line, and four additional minor QTLs. The major QTL, we term Ty-5, maps to chromosome 4 and accounts for 39.7–46.6% of the variation in symptom severity among segregating plants (LOD score 33–35). The minor QTLs, originated either from the resistant or susceptible parents, were mapped to chromosomes 1, 7, 9 and 11, and contributed 12% to the variation in symptom severity in addition to Ty-5.  相似文献   

16.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

17.
Previously we demonstrated that inhibition of replication-associated protein (Rep) binding to its replication origin by artificial zinc-finger proteins (AZPs) is a powerful method to prevent plant virus infection in vivo. In the present study, we applied the AZP technology to Tomato yellow leaf curl virus (TYLCV), which is a limiting factor in tomato cultivation worldwide. First, we determined 5′-ATCGGTGT ATCGGTGT-3′ in the 195-bp intergenic region of the TYLCV-Israel strain, a strain reported first among TYLCV strains, as the Rep-binding site by gel shift assays. We then constructed a 6-finger AZP that bound to a 19-bp DNA including the Rep-binding site. We demonstrated that the binding affinity of the AZP was >1,000-fold greater than that of Rep and that the AZP inhibited Rep binding completely in vitro. Because the binding capability of the AZP was same as that of the AZP previously designed for geminivirus-resistant Arabidopsis thaliana, we predict that the present AZP will prevent TYLCV infection in vivo.  相似文献   

18.
The coat protein (CP) of Tomato yellow leaf curl virus (TYLCV), encoded by the v1 gene, is the only known component of the viral capsid. In addition, the CP plays a role in the virus transport into the host cell nucleus where viral genes are replicated and transcribed. In this study, we analyzed the effect of small interfering double-stranded RNAs (siRNAs), derived from an intron-hairpin RNA (ihpRNA) construct and targeting the v1 gene product, on CP accumulation. Transient assays involving agroinfiltration of the CP-silencing construct followed by infiltration of a fused GFP-CP (green fluorescent protein-coat protein) gene showed down-regulation of GFP expression in Nicotiana benthamiana. Some of the transgenic tomato plants (cv. Micro-Tom), expressing the siRNA targeted against the TYLCV CP gene, did not show disease symptoms 7 weeks post-inoculation with the virus, while non-transgenic control plants were infected within 2 weeks post inoculation. The present study demonstrates, for the first time, that siRNA targeted against the CP of TYLCV can confer resistance to the virus in transgenic tomato plants, thereby enabling flowering and fruit production.  相似文献   

19.
Recombinant virus‐like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low‐level antigen accumulation and long‐time frame to produce transgenic plants are the two major roadblocks in the practical development of plant‐based VLP production. In this article, we describe the optimization of geminivirus‐derived DNA replicon vectors for rapid, high‐yield plant‐based production of VLPs. Co‐delivery of bean yellow dwarf virus (BeYDV)‐derived vector and Rep/RepA‐supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co‐expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built‐in Rep/RepA cassette without P19 drove protein expression at similar levels as the three‐component system. These results demonstrate the advantages of fast and high‐level production of VLP‐based vaccines using the BeYDV‐derived DNA replicon system for transient expression in plants. Biotechnol. Bioeng. 2009;103: 706–714. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
番茄黄化曲叶病毒的快速分子检测   总被引:5,自引:0,他引:5  
Li CB  Cui YL  Zhang LY  Li CY 《遗传》2012,34(3):366-370
番茄黄化曲叶病毒是当前世界范围内危害番茄生产的毁灭性病害。文章针对番茄黄化曲叶病毒全基因组序列的特异区段自主设计了1对特异性PCR引物(上游引物TYLCV-F:5′-ACGCATGCCTCTAATCCAGTGTA-3′,下游引物TYLCV-R:5′-CCAATAAGGCGTAAGCGTGTAGAC-3′),依据PCR扩增特异片段543 bp的有无可以快速、准确、高效、特异地检测出是否感染了TYLCV病毒,这项技术可以方便地应用到工厂化育苗的带毒性检测、蔬菜大规模生产中植株发病情况的快速检测以及抗病毒育种,从而为蔬菜安全可持续生产提供科技支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号