首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.

Background  

There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically.  相似文献   

2.

Background  

Microarray gene expression data are often analyzed together with corresponding physiological response and clinical metadata of biological subjects, e.g. patients' residual tumor sizes after chemotherapy or glucose levels at various stages of diabetic patients. Current clustering analysis cannot directly incorporate such quantitative metadata into the clustering heatmap of gene expression. It will be quite useful if these clinical response data can be effectively summarized in the high-dimensional clustering display so that important groups of genes can be intuitively discovered with different degrees of relevance to target disease phenotypes.  相似文献   

3.
4.

Background  

Clustering is one of the most commonly used methods for discovering hidden structure in microarray gene expression data. Most current methods for clustering samples are based on distance metrics utilizing all genes. This has the effect of obscuring clustering in samples that may be evident only when looking at a subset of genes, because noise from irrelevant genes dominates the signal from the relevant genes in the distance calculation.  相似文献   

5.

Background  

Time-course microarray experiments produce vector gene expression profiles across a series of time points. Clustering genes based on these profiles is important in discovering functional related and co-regulated genes. Early developed clustering algorithms do not take advantage of the ordering in a time-course study, explicit use of which should allow more sensitive detection of genes that display a consistent pattern over time. Peddada et al. [1] proposed a clustering algorithm that can incorporate the temporal ordering using order-restricted statistical inference. This algorithm is, however, very time-consuming and hence inapplicable to most microarray experiments that contain a large number of genes. Its computational burden also imposes difficulty to assess the clustering reliability, which is a very important measure when clustering noisy microarray data.  相似文献   

6.

Background  

In order to recapitulate tumor progression pathways using epigenetic data, we developed novel clustering and pathway reconstruction algorithms, collectively referred to as heritable clustering. This approach generates a progression model of altered DNA methylation from tumor tissues diagnosed at different developmental stages. The samples act as surrogates for natural progression in breast cancer and allow the algorithm to uncover distinct epigenotypes that describe the molecular events underlying this process. Furthermore, our likelihood-based clustering algorithm has great flexibility, allowing for incomplete epigenotype or clinical phenotype data and also permitting dependencies among variables.  相似文献   

7.

Background  

Protein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further data sources derived from local sequence alignments. This raises the issue of finding the most efficient method for combining these different informative data sources and exploring their relative significance for protein fold classification. Kernel methods have been extensively used for biological data analysis. They can incorporate separate fold discriminatory features into kernel matrices which encode the similarity between samples in their respective data sources.  相似文献   

8.

Background  

The analysis of large-scale data sets via clustering techniques is utilized in a number of applications. Biclustering in particular has emerged as an important problem in the analysis of gene expression data since genes may only jointly respond over a subset of conditions. Biclustering algorithms also have important applications in sample classification where, for instance, tissue samples can be classified as cancerous or normal. Many of the methods for biclustering, and clustering algorithms in general, utilize simplified models or heuristic strategies for identifying the "best" grouping of elements according to some metric and cluster definition and thus result in suboptimal clusters.  相似文献   

9.

Background  

Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance.  相似文献   

10.

Background  

A method to evaluate and analyze the massive data generated by series of microarray experiments is of utmost importance to reveal the hidden patterns of gene expression. Because of the complexity and the high dimensionality of microarray gene expression profiles, the dimensional reduction of raw expression data and the feature selections necessary for, for example, classification of disease samples remains a challenge. To solve the problem we propose a two-level analysis. First self-organizing map (SOM) is used. SOM is a vector quantization method that simplifies and reduces the dimensionality of original measurements and visualizes individual tumor sample in a SOM component plane. Next, hierarchical clustering and K-means clustering is used to identify patterns of gene expression useful for classification of samples.  相似文献   

11.

Background  

The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM.  相似文献   

12.

Background  

Clustering analysis of microarray data is often criticized for giving ambiguous results because of sensitivity to data perturbation or clustering techniques used. In this paper, we describe a new method based on principal component analysis and ensemble consensus clustering that avoids these problems.  相似文献   

13.

Background  

The versatility of DNA copy number amplifications for profiling and categorization of various tissue samples has been widely acknowledged in the biomedical literature. For instance, this type of measurement techniques provides possibilities for exploring sets of cancerous tissues to identify novel subtypes. The previously utilized statistical approaches to various kinds of analyses include traditional algorithmic techniques for clustering and dimension reduction, such as independent and principal component analyses, hierarchical clustering, as well as model-based clustering using maximum likelihood estimation for latent class models.  相似文献   

14.

Background  

Cluster analysis is an important technique for the exploratory analysis of biological data. Such data is often high-dimensional, inherently noisy and contains outliers. This makes clustering challenging. Mixtures are versatile and powerful statistical models which perform robustly for clustering in the presence of noise and have been successfully applied in a wide range of applications.  相似文献   

15.

Background  

The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using "classic" clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context.  相似文献   

16.

Background  

One of the most commonly performed tasks when analysing high throughput gene expression data is to use clustering methods to classify the data into groups. There are a large number of methods available to perform clustering, but it is often unclear which method is best suited to the data and how to quantify the quality of the classifications produced.  相似文献   

17.

Background  

In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms such as K-means, hierarchical clustering, SOM, etc, genes are partitioned into groups based on the similarity between their expression profiles. In this way, functionally related genes are identified. As the amount of laboratory data in molecular biology grows exponentially each year due to advanced technologies such as Microarray, new efficient and effective methods for clustering must be developed to process this growing amount of biological data.  相似文献   

18.

Background  

New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data.  相似文献   

19.

Background  

Hierarchical clustering is a widely applied tool in the analysis of microarray gene expression data. The assessment of cluster stability is a major challenge in clustering procedures. Statistical methods are required to distinguish between real and random clusters. Several methods for assessing cluster stability have been published, including resampling methods such as the bootstrap.  相似文献   

20.

Background  

Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号