首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

2.
The effect of N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ) on 5-HT1A receptors was studied in Sprague Dawley rats. A single dose of EEDQ (4 mg/kg body wt., i.p.) significantly inactivated 5-HT1A receptors, as measured by [3H]8-hydroxy-2-[di-n-propylamino]-tetralin ([3H]8-OH-DPAT), in cortex (64%, p < 0.0001) and hippocampus (48%, p < 0.0001). A significant (p < 0.01) increase in the affinity of 5-HT1A receptors for radioligand was observed in both regions. A dose dependent protection of cortical 5-HT1A receptors from EEDQ inactivation with pre-treatment of different doses of 8-OH-DPAT (4–20 mg/kg) was observed, along with recovery of affinity of [3H]8-OH-DPAT for 5-HT1A receptors in both regions. Although, a dose of 4 mg/kg of 8-OH-DPAT failed to attenuate the effect of EEDQ on hippocampal 5-HT1A receptors, a significant protection of these receptors was observed with 10 and 20 mg/kg of 8-OH-DPAT. Displacement studies revealed that EEDQ has more affinity for cortical (Ki = 101.3 ± 11.8 nM) than hippocampal (Ki = 133.5 ± 25.8 nM) 5-HT1A receptors. A time dependent natural recovery of 5-HT1A receptors from inactivation by a single dose of EEDQ (4 mg/kg) was observed more in cortex compared to hippocampus over a period from 1 day to 14 days. The results of this study suggest that 8-OH-DPAT inhibited EEDQ inactivation of cortical and hippocampal 5-HT1A receptors in a concentration dependent manner. The synthesis and turnover of 5-HT1A receptors differ in cortex and hippocampus, as evident by earlier recovery in the cortex.  相似文献   

3.
The objectives of this study were to characterize the effects of a chronic lithium (Li+) treatment on serotonin (5-HT) uptake sites and on 5-HT1A receptors, and to determine the eventual reversibility of the treatment. The experiments were carried out with membranes from rat cerebral cortex using 8-hydroxy-2-(propylamino)tetralin, or [3H]8-OH-DPAT, and [3H]citalopram to label 5-HT1A receptors and 5-HT uptake sites, respectively. Endogenous levels of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were measured by high-performance liquid chromatography in the cingulate cortex. The saturation curves with [3H]8-OH-DPAT were always best fitted a two-site model. After a treatment with Li+ for 28 days, no alterations in the binding parameters of [3H]8-OH-DPAT to the high- and low-affinity binding sites could be documented. However, competition curves with 5-HT to inhibit [3H]8-OH-DPAT binding revealed a decreased proportion of sites with high affinity for the agonist, together with an increased density of sites with low affinity for 5-HT, suggesting an alteration in the coupling efficacy between 5-HT1A receptors and their transduction systems. Saturation studies with [3H]citalopram showed an increase (>40%) in the density of 5-HT uptake sites after chronic Li+, suggesting a more efficient 5-HT uptake process for the treated animals, in accord with clinical observations. Although 5-HT contents in cingulate cortex remained unchanged after the treatment, 5-HIAA levels decreased (>30%), leading to a diminished (almost 50%) 5-HT turnover; and also reflecting a more efficient uptake in the treated rats, so that less 5-HT could be degraded by extracellular monoamine oxidase. All the effects revealed by [3H]8-OH-DPAT and [3H]citalopram were reversed following a recovery period of two days without Li+. Since symptoms of bipolar affective disorders may reappear if the chronic Li+ treatment is interrupted, the reversibility of the observed effects further supports the importance of central 5-HT synaptic transmission in the pathophysiology and treatment of human affective disorders.  相似文献   

4.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

5.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

6.
We prepared slices from midbrain containing the raphe nuclei and from hippocampus of rats. The brain slices were loaded with [3H]serotonin and superfused in order to measure the release of radioactivity at rest and in response to electrical stimulation. No difference was observed in the resting and stimulated fractional release of tritium in the somatodendritic and axon terminal parts of serotonergic neurons. The selective 5-HT1A receptor agonist 8-OH-DPAT decreased the electrically induced tritium effux from raphe nuclei slices preloaded with [3H]serotonin, and this inhibition was reversed by 5-HT1A receptor antagonist (+)WAY-100135. The 5-HT1B receptor agonist CGS-12066B but not 8-OH-DPAT, inhibited the stimulation-evoked tritium efflux from hippocampal slices after labeling with [3H]serotonin. The electrical stimulation-evoked tritium efflux in raphe nuclei slices incubate with [3H]serotonin was completely external Ca2+-dependent, and omega-conotoxin GVIA and Cd2+, but not diltiazem, inhibited the tritium overflow. In raphe nuclei slices 4-aminopyridine enhanced the electrical stimulation-induced trititum release in a concentration-dependent manner. The inhibition of tritium efflux by 8-OH-DPAT was abolished with 4-aminopyridine. Glibenclamide or tolbutamide proved to be ineffective. These data indicate that (1) different 5-HT receptor subtypes (5-HT1A and 5-HT1B) regulate dendritic and axon terminal 5-HT release; (2) serotonin release from the dendrites may be regulated by the voltage-sensitive N-type Ca2+ channels; (3) the 5-HT1A receptor-mediated inhibition of serotonin release may be due to opening of voltage-sensitive K+ channels.  相似文献   

7.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

8.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

9.
The effects of chronic administration of interferon (IFN; recombinant human IFN -A/D) on serotonergic binding sites in rat brain were investigated. IFN was injected daily for 2 weeks at a dose of 100000 I.U./kg, (i.p.) in male Wistar rats. IFN did not alter either [3H]ketanserin binding to 5-HT2A receptors or [3H]paroxetine binding to 5-HT transporters. Scatchard analysis of [3H]8-hydroxy-dipropylaminotetraline (8-OH-DPAT) binding to 5-HT1A receptors demonstrated the presence of high- and low-affinity binding sites in both treatment and control groups. IFN significantly increased both Kd and Bmax measures of [3H]8-OH-DPAT binding at low-affinity binding sites, but not at the high-affinity sites. These results suggest that IFN affects the low-affinity 5-HT1A receptors sites and may be involved in the development of IFN-induced psychiatric disturbances.  相似文献   

10.
Subhash  M. N.  Jagadeesh  S. 《Neurochemical research》1997,22(9):1095-1099
The effect of chronic administration of Imipramine on [3H]Spiperone binding to 5-HT2 sites and inositoltrisphosphate (IP3) levels in rat cerebral cortex was studied. Our data shows that treatment with imipramine (5 mg/kg body weight, intraperitoneally) for 30 days significantly down regulates 5-HT2 receptors sites (262 ± 29 fmol/mg protein) in cerebral cortex (38%), compared to control rats (425 ± 60 fmol/mg protein., P < 0.001). However there was no significant change in the affinity of [3H]-Spiperone binding (kd) to 5-HT2 sites in cerebral cortex after exposure to imipramine (Kd = 0.84 ± 0.11 nM). It is also observed that imipramine treatment significantly reduces 5-HT stimulated [3H]IP3 formation in cerebral cortex (6,411 ± 708 dpm/mg protein), compared to the saline treated rats (12,238 ± 1,544 dpm/mg protein; P < 0.001), with concomitant decrease in Pdtlns-4–5-P2. This study suggests that the therapeutic action of imipramine in brain might be by reducing hypersensitivity of 5-HT2 receptors by down regulation, which leads to reduced levels of inositolphospholipids. This inturn reduces the levels of IP3. In conclusion, imipramine acts at presynaptic site by blocking the reuptake of serotonin and at post synaptic site it downregulates 5-HT2 sites with decreased IP3 levels after chronic exposure.  相似文献   

11.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

12.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

13.
Abstract

Two complementary approaches, covalent labelling and solubilization, have been used to study the biochemical properties of the central 5-HT1A receptor binding site. We have first designed a photoaffinity ligand containing the structure of 8-OH-DPAT, a potent and specific agonist of 5-HT1A sites. Thus, 8-methoxy-2[N-n-propyl,N-3-(2-nitro-4-azido-phenyl)- aminopropyl]aminotetralin or 8-methoxy-3'-NAP-amino-PAT, was found to displace, in the dark, [3H]8-OH-DPAT from 5-HT1A sites in rat hippocampal membranes with an IC50 of 6.6 nM. Under two cumulative UV irradiations (366 nm, for 20 min at 4°C), 8-methoxy-3-'-NAP-amino-PAT (30 nM) blocked irreversibly 55-60% of 5-HT1A binding sites. This blockade was specific of 5-HT1A sites since the other serotoninergic sites, 5-HT1B, 5-HT2 and also the presynaptic 5-HT3 sites were not affected by the treatment. In addition, the binding of [3H]Spiperone and [3H]7-OH-DPAT to striatal dopamine sites remained unchanged under similar photolysis conditions. The tritiated derivative of the photoaffinity ligand (92 Ci/mmol) was then synthesized for the identification of the covalently bound protein(s). SDS-PAGE of solubilized membranes irradiated in the presence of 20 nM 3H-8-methoxy-3'-NAP-amino-PAT allowed the detection of a 63 kD protein whose labelling appeared specific. Thus, 3H-incorporation into the 63 kD band could be prevented by uM concentrations of 5-HT, 8-OH-DPAT and other selective 5-HT1A ligands such as isapirone. In contrast, the 5-HT2 antagonist ketanserin, norepinephrine and dopamine-related ligands (including 7-OH-DPAT) were ineffective. Direct solubilization of 5-HT1A receptor binding sites was also attempted from rat hippocampal membranes. The best results were obtained using CHAPS (10 mM) plus NaCl (0.2 M), which led to 50 % recovery of 5-HT1A sites in the 100,000 g supernatant. The pharmacological properties and sensitivity to N-ethyl-maleimide and GppNHp of soluble sites appeared near identical to those of membrane-bound 5-HT1A sites.  相似文献   

14.
Subhash MN  Srinivas BN  Vinod KY 《Life sciences》2002,71(13):1559-1567
The in vivo effect of trazodone on the density of [(3)H]5-HT binding sites and 5-HT(1A) receptors and adenylyl cyclase (AC) response was studied in regions of rat brain. The chronic administration of trazodone (10 mg/Kg body wt, 40 days) resulted in a significant downregulation of [(3)H]5-HT binding sites and 5-HT(1A) receptors in cortex and hippocampus. Trazodone significantly (p < 0.0001) decreased the density of [(3)H]5-HT binding sites in cortex (42.6 +/- 3.6 fmol/mg protein, 65%) and hippocampus (12.6 +/- 1.6 fmol/mg protein, 87%) when compared to control values of 121.9 +/- 5.4 and 99.3 +/- 7.5 fmol/mg protein in these regions, respectively. Similarly there was a significant (p < 0.0001) decrease in the density of 5-HT(1A) receptors in both cortex (7.2 +/- 0.5 fmol/mg protein, 70%) and hippocampus (6.3 +/- 1.2 fmol/mg protein, 79%) when compared to control values of 24.2 +/- 2.1 and 30.6 +/- 3.7 fmol/mg protein, in these regions respectively. However, the affinity of [(3)H]5-HT to 5-HT binding sites (1.83 +/- 0.26 nM, p < 0.0001) and [(3)H]8-OH-DPAT to 5-HT(1A) receptors (0.60 +/- 0.06 nM, p < 0.05) was significantly decreased only in cortex when compared to the control K(d) values of 0.88 +/- 0.04 nM and 0.47 +/- 0.02 nM in these regions, respectively.The basal AC activity did not alter in treated rats, where as, the inhibition of forskolin-stimulated AC activity by 5-HT (10 microM) was significantly (p < 0.0001) decreased both in cortex (43%) and hippocampus (40%) when compared to control levels. In conclusion, chronic treatment with trazodone results in downregulation of 5-HT(1A) receptors in cortex and hippocampus along with concomitant increased AC response, suggesting the involvement of 5-HT(1A) receptor-mediated AC response in the mechanism of action of trazodone.  相似文献   

15.
The purpose of the present study was the characterization of the receptors participating in the regulatory mechanism of glial Na+/K+-ATPase by serotonin (5-HT) in rat brain. The activity of the Na+ pump was measured in four brain regions after incubation with various concentrations of serotoninergic agonists or antagonists. A concentration-dependent increase in enzyme activity was observed with the 5-HT1A agonist R (+)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) in homogenates or in glial membrane enriched fractions from cerebral cortex and in hippocampus. Spiperone, a 5-HT1A antagonist, completely inhibited the response to 8-OH-DPAT but had no effect on Na+/K+-ATPase activity in cerebellum where LSD, a 5-HT6 agonist, elicited a dose-dependent response similar to that of 5-HT. In brainstem, a lack of reponse to 5-HT and other agonists was confirmed. Altogether, these results show that serotonin modulates glial Na+/K+-ATPase activity in the brain, apparently not through only one type of 5-HT receptor. It seems that the receptor system involved is different according to the brain region. In cerebral cortex, the response seems to be mediated by 5-HT1A as well as in hippocampus but not in cerebellum where 5-HT6 appears as the receptor system involved.  相似文献   

16.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

17.
Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays, we sought to characterize GPCR recognition binding sites on HeLaS3 tumor cells. High levels of binding of the selective serotonin 5-HT1A receptor agonist [3H]8-OH-DPAT were observed in these cells. Saturation and homologous competition experiments indicated that [3H]8-OH-DPAT bound different populations of high- and low-affinity sites. In competition experiments, several serotonergic compounds displaced [3H]8-OH-DPAT binding with low potency from its high-affinity binding sites, suggesting that low-affinity binding is the predominant mode of binding. A variety of drugs targeting different classes of receptors did not affect [3H]8-OH-DPAT binding. These observations may help elucidate the pathophysiological and functional relevance of 5-HT receptors in tumor cells and link GPCRs and tumorigenic mechanisms to pharmacological and chemotherapeutic paradigms.  相似文献   

18.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

19.
Abstract

Serotonin (5-HT) is a potent bioactive substance known to function through a number of different receptor types and subtypes. In our attempt to develop new agents that would interact selectively at certain 5-HT receptors, especially the 5-HT1A subtype, 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) served as a template for the design of novel agents sharing aspects of the pharmacophore of 8-OH-DPAT and 5-HT. 5-HT contains no center of asymmetry, and 8-OH-DPAT shows only very modest stereospecificity for 5-HT1A receptors. To develop agents having enhanced potency and selectivity for the 5-HT1A site, several ring systems offering enhanced conformational rigidity which approximate the oxygen to nitrogen interatomic distances of 8-OH-DPAT and (to a lesser extent) 5-HT were synthesized. Exemplary ring systems include the 8-alkoxy-hexahydroindeno[1,2-c]pyrrole, 5-alkoxy-hexahydro-1H-indeno-[2,1-c]pyridine, and 9-alkoxy-hexahydro-1H-benz[e]isoindole systems. These couformationally restricted molecules demonstrated moderate stereospecificity in their interaction with the 5-HT1A binding site, which was enhanced in compounds with larger nitrogen substituents. Appropriate choice of such derivatives led to highly potent compounds selective for 5-HT1A sites compared with their activity at other 5-HT and/or adrenergic receptors. The pharmacological profile of compounds which appear to act as agonists at 5-HT1A receptors in the central nervous system to lower blood pressure in animal models of hypertension is presented  相似文献   

20.
《Life sciences》1987,41(13):1567-1576
[3H]Spiroxatrine was examined as a potential ligand for the labeling of 5-HT1A sites in the rat hippocampus. Analysis of the binding of [3H]spiroxatrine in the absence and presence of varying concentrations of three monoamine neurotransmitters revealed that serotonin (5-HT) had high affinity (IC50= 20.7 nM for the [3H]spiroxatrine binding sites, consistent with the labeling of 5-HT1 sites, while dopamine and norepinephrine had very low affinity (IC50=57600 nM and >10−4 M respectively). Saturation studies of the binding of [3H]spiroxatrine revealed a single population of sites with a Kd=2.21 nM. Further pharmacologic characterization with the 5-HT1A ligands 8-hydroxy-2-(di-n-propylamino) tetralin, ipsapirone, and WB4101 and the butyrophenone compounds spiperone and haloperidol gave results that were consistent with [3H]spiroxatrine labeling 5-HT1A sites. This ligand produced stable, reproducible binding with a good ratio of specific to nonspecific binding. The binding of [3H]spiroxatrine was sensitive to GTP, suggesting that this ligand may act as an agonist. This was supported by the finding that spiroxatrine inhibits forskolin-stimulated adenylate cyclase activity (a proposed 5-HT1A receptor model) in the rat hippocampus. Since [3H]spiroxatrine is structurally distinct from other currently available radioligands for the 5-HT1A site, it should provide new information about the properties of this putative serotonergic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号