首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.  相似文献   

2.
Summary Two women with primary amenorrhoea and few other stigmata of Turner's syndrome were found to be chromosome mosaics: 45,X/46,X,idic(Y). In Case 1, the dicentric isochromosome Y was found to have a long-arm breakpoint of formation. This structure was interpreted as containing two Y short arms and centromeres separated by a region derived from the proximal Y long arm. One of the centromeres in the Case 1 —idic(Y) was suppressed in 80% of cells in blood, and in these cells it appeared as a regular Y-shaped chromosome. In Case 2 the idic(Y) was derived by a short-arm breakpoint of formation. In all the dicentrics of this case with one primary constriction (functional monocentrics) there was a single Cd band. In the 10% of dicentrics with two primary constrictions, there were two Cd bands. It is argued that the instability of sex isochromosomes is due to this functional dicentricity in some cells. These cases are compared with 42 other Y isochromosomes with various short- and long-arm breakpoints of formation. It is suggested that some of the nonheterochromatic, nonfluorescent Y chromosomes previously reported may be explained as dicentric i(Y) with proximal long-arm breakpoints of formation and one suppressed centromere.  相似文献   

3.
Whereas the major satellite fraction in mouse extends its domain from the centromere to the distal end of the pericentric heterochromatin, the minor satellite DNA is present specifically in the centromere or primary constriction. We hybridized the biotinylated minor satellite sequence to L929 cells of mouse origin. The sequence hybridized to all chromosomes. Whereas hybridization was detected on all active centromeres, the inactive centromeres in certain dicentrics did not show any signal. This satellite, however, was detected in all inactive centromeres in a heptacentric chromosome. The intensity of fluorescence on the inactive centromeres of the heptacentric was similar to that present on the active centromeres. Several heterochromatin blocks, which were not associated with any centromere, were also found to lack hybridization with the minor satellite. The inactive centromeres, whether carrying the minor satellite DNA fraction or not, generally do not react with the antikinetochore antibodies present in the scleroderma serum. These studies are interpreted to show that (1) the primary constriction in mouse can be formed without the participation of minor satellite, (2) heterochromatin in mouse may constitute without this fraction, (3) the major and minor satellite may not be interspersed but are joined at some defined boundary, and (4) the binding of CENP-B does not depend upon the quantity of minor satellite or the number of CENP boxes present in the inactive centromeres.  相似文献   

4.
Summary Two previous single case reports from the literature showed the presence or absence of centromeric antigens at the site of the inactive centromeres in one (X;X) and in one (9;11) dicentric chromosome. We studied nine different dicentric chromosomes using anticentromeric antibodies and immunofluorescence techniques. In the four autosomal dicentrics the inactive centromere was consistently positive while the dicentrics composed of two X chromosomes were either positive or negative; one case of (X;Y) dicentric was negative. The results indicate that the X chromosome mode of replication may be involved in the suppression of immunofluorescence at the site of the inactive centromere and that one centromere of the dicentric chromosome may lose its function but conserve some of its antigenic properties. This indicates that not all these antigens play a rôle in the microtubules-centromere interaction.  相似文献   

5.
Dicentric chromosomes and the inactivation of the centromere   总被引:1,自引:0,他引:1  
Summary The origin and behavior of human dicentric chromosomes are reviewed. Most dicentrics between two non-homologous or two homologous chromosomes (isodicentrics), which are permanent members of a chromosome complement, probably originate from segregation of an adjacent quadriradial; such configurations are the result of a chromatid translocation between two nonhomologous chromosomes, or they represent an adjacent counterpart of a mitotic chiasma. The segregation of such a quadriradial may also give rise to a cell line monosomic for the chromosome concerned (e.g., a 45,X line). Contrary to the generally held opinion, isodicentrics rarely result from an isolocal break in two chromatids followed by rejoining of sister chromatids. In this case the daughter centromeres go to opposite poles in the next anaphase, and the resulting bridge breaks at a random point. This mechanism, therefore, leads to the formation of an isodicentric chromosome only if the two centromeres are close together, or if one centromere is immediately inactivated. Observations on the origin of dicentrics in Bloom syndrome support these conclusions. One centromere is permanently inactivated in most dicentric chromosomes, and even when the dicentric breaks into two chromosomes, the centromere is not reactivated. The appearance and behavior of the acentric X chromosomes show that their centromeres are similarly inactivated and not prematurely divided. Two Bloom syndrome lymphocytes, one with an extra chromosome 2 and the other with an extra chromosome 7, each having an inactivated centromere, show that this can also happen in monocentric autosomes.  相似文献   

6.
Summary The evidence that the Cd technique identifies the kinetochore was based on the finding that inactive centromeres are C-positive but Cd-negative. The identity between Cd-positivity and centromere function is now confirmed by the reverse procedure: a stable abnormal chromosome is consistently C-negative but Cd-positive at its single centromeric constriction. This demonstrates that the Cd dots are not a relic of C-banding but identify the active centromere.  相似文献   

7.
Summary A patient with azoospermia and a Y isochromosome is described. The breakpoint producing this i(Y) was within the terminal short arm of the Y chromosome. Lymphocyte cultures from peripheral blood contained a high proportion of 45,X cells and cells with different Y-chromosome rearrangements. The i(Y) had either a monocentric or dicentric appearance. In dicentrics, anti-kinetochore immunofluorescence was present at both centromeres. However, this was also true for most of the functional monocentrics (pseudodicentrics). Kinetochore staining was generally positive at the site of the inactive centromeres; only a minority of the suppressed centromeres had lost their antigenic properties. Permanently growing lymphoblasts consistently showed a monocentric i(Y) with only one fluorescing kinetochore; the immunonegative Y centromere did not recover antigenicity.  相似文献   

8.
Some dicentric chromosomes show only one primary constriction at metaphase and behave in cell division as if they are monocentric. The few previous reports of tdic (translocation dicentric) chromosomes showing one morphologic indicate that among the cells of an individual the same centromere consistently shows the primary constriction. The present case deals with a tdic(5;15)(p13;p11) chromosome that is an exception to this pattern. Scoring 98 GTG-, C-, and QFQ-banded metaphases specifically for primary constrictions revealed 15 (15%) containing a tdic chromosome with a single primary constriction. Among these chromosomes, 8 (8%) were at the chromosome 15 centromere and 7 (7%) were at the chromosome 5 centromere. The remaining 83 (85%) tdic chromosomes showed two primary constrictions. We analyzed a total of 172 metaphases from peripheral blood, and all except 3 (1.7%) contained the tdic chromosome. Among these three cells, the tdic chromosome was broken in two and absent in one, which indicates that there was some unstable separation of this dicentric in cell division. In two metaphases, there was a chromatid gap at the site of one centromere. Possibly, the absence of certain primary constrictions was associated with deletion of centromeres. This mechanism may be a continual source for additional centromere inactivation during the life of this patient. This case demonstrates that for some dicentrics either centromere may become nonfunctional and inactivation can occur more than once within an individual. The karyotype of this patient was 45,XX,tdic(5;15)(p31;p11). Thus, she was monosomic for about 3/4 of the chromosome 5 short arm. Clinically, this infant had a shrill catlike cry and facies of the cri du chat syndrome.  相似文献   

9.
A stable, dicentric human chromosome, which is known from light microscopy to show a 50:50 distribution between monocentric/dicentric appearance, was examined by conventional electron microscopy and after labelling the centromere with anticentromere antibodies from CREST serum. Both centromeres of the chromosome developed kinetochores whether in monocentric or dicentric configuration. The eight monocentrics observed had all developed kinetochores at the centromere outside the constriction; at least six of them also had kinetochores at the centromere in the constriction. The dicentrics from glutaraldehyde fixed cells had spindle microtubules attached to both kinetochore sets irrespective of monocentric/dicentric configuration. The chromosome thus appeared to use both centromeres, either equally or with one serving a chromatid adhesion function while the second was used for transport along the spindle.  相似文献   

10.
A de novo dicentric Y;21 (q11.23;p11) translocation chromosome with one of its two centromeres inactive has provided the opportunity to study the relationship between centromeric inactivation, the organization of alphoid satellite DNA and the distribution of CENP-C. The proband, a male with minor features of Down’s syndrome, had a major cell line with 45 chromosomes including a single copy of the translocation chromosome, and a minor one with 46 chromosomes including two copies of the translocation chromosome and hence effectively trisomic for the long arm of chromosome 21. Centromeric activity as defined by the primary constriction was variable: in most cells with a single copy of the Y;21 chromosome, the Y centromere was inactive. In the cells with two copies, one copy had an active Y centromere (chromosome 21 centromere inactive) and the other had an inactive Y centromere (chromosome 21 centromere active). Three different partial deletions of the Y alphoid array were found in skin fibroblasts and one of these was also present in blood. Clones of single cell origin from fibroblast cultures were analysed both for their primary constriction and to characterise their alphoid array. The results indicate that (1) each clone showed a fixed pattern of centromeric activity; (2) the alphoid array size was stable within a clone; and (3) inactivation of the Y centromere was associated with both full-sized and deleted alphoid arrays. Selected clones were analysed with antibodies to CENP-C, and staining was undetectable at both intact and deleted arrays of the inactive Y centromeres. Thus centromeric inactivation appears to be largely an epigenetic event. Received: 30 January 1997; in revised form: 3 April 1997 / Accepted: 8 May 1997  相似文献   

11.
Stable maize (Zea mays) chromosomes were recovered from an unstable dicentric containing large and small versions of the B chromosome centromere. In the stable chromosome, the smaller centromere had become inactivated. This inactive centromere can be inherited from one generation to the next attached to the active version and loses all known cytological and molecular properties of active centromeres. When separated from the active centromere by intrachromosomal recombination, the inactive centromere can be reactivated. The reactivated centromere regains the molecular attributes of activity in anaphase I of meiosis. When two copies of the dicentric chromosome with one active and one inactive centromere are present, homologous chromosome pairing reduces the frequency of intrachromosomal recombination and thus decreases, but does not eliminate, the reactivation of inactive centromeres. These findings indicate an epigenetic component to centromere specification in that centromere inactivation can be directed by joining two centromeres in opposition. These findings also indicate a structural aspect to centromere specification revealed by the gain of activity at the site of the previously inactive sequences.  相似文献   

12.
Stable, tandem dicentric chromosomes were discovered in two mutant cell colonies resulting from exposure of L5178Y mouse lymphoma cells to chemical mutagens. These unusual dicentrics were present in all metaphase cells examined from these colonies, even after approximately 65 cell generations in culture. Observation of cells in metaphase and anaphase suggests that the interstitial centromere in these dicentrics is non-functional, and that the terminal centromere is solely responsible for their orderly anaphase segregation.  相似文献   

13.
Kinetochore development in two dicentric chromosomes in man   总被引:1,自引:1,他引:0  
Summary Two dicentric human chromosomes were investigated with light and electron microscopic techniques. One chromosome, with a translocation tdic(5;13)(p12;p12), behaved as a dicentric in about half the cells: it had two primary constrictions; C- and Cd-banding showed two centromeres; and the CREST antikinetochore antibody reacted with the two centromeres with equal affinity. Electron microscopic analysis of sectioned metaphases showed that the dicentric could develop kinetochores at both centromeres simultaneously. The other dicentric chromosome, tdic(21;21)(q22;q22), occasionally showed two primary constrictions, but both C-and Cd-banding distinguished between an active and an inactive centromere, and the CREST antibody reacted only weakly with the inactive centromere. Electron microscopy showed kinetochore development at only one centromere.  相似文献   

14.
Fu S  Gao Z  Birchler J  Han F 《遗传学报》2012,39(3):125-130
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.  相似文献   

15.
Summary Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45,X/46,X,i(Y)(q12) and 46,XY/ 47,XY,+t(X;Y)(p22.3;p11.3). The analysis of the behaviour of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.  相似文献   

16.
Segregation after mitotic crossing-over in an isodicentric (idic) X chromosome with one active and one inactive centromere has given rise to two new cell lines, one in which the idic(Xpter) chromosome has two active centromeres (most of these chromosomes also have an inversion) and another in which neither centromere is active. The two X chromosomes are attached at the telomeres of their short arms. Similar segregation has given rise to two other cell lines with idic(Xq-) chromosomes. Other observations on segregation after mitotic crossing-over are reviewed. Unequal crossing-over has apparently played a major role in the evolution of various genes and heterochromatin. Retinoblastoma and Wilms tumor are in some cases associated with homozygosity of a chromosome segment resulting from mitotic crossing-over. Similarly, the high incidence of cancer in Bloom syndrome may be caused by mitotic crossing-over leading to homozygosity or amplification of oncogenes.  相似文献   

17.
In the nuclei of some interspecific hybrid and allopolyploid plant species, each genome occupies a separate spatial domain. To analyze this phenomenon, we studied localization of the centromeres in the nuclei of a hybrid between Torenia fournieri and T. baillonii during mitosis and meiosis using three-dimensional fluorescence in situ hybridization (3D-FISH) probed with species-specific centromere repeats. Centromeres of each genome were located separately in undifferentiated cells but not differentiated cells, suggesting that cell division might be the possible force causing centromere separation. However, no remarkable difference of dividing distance was detected between chromatids with different centromeres in anaphase and telophase, indicating that tension of the spindle fiber attached to each chromatid is not the cause of centromere separation in Torenia. In differentiated cells, centromeres in both genomes were not often observed for the expected chromosome number, indicating centromere association. In addition, association of centromeres from the same genome was observed at a higher frequency than between different genomes. This finding suggests that centromeres within one genome are spatially separated from those within the other. This close position may increase possibility of association between centromeres of the same genome. In meiotic prophase, all centromeres irrespective of the genome were associated in a certain portion of the nucleus. Since centromere association in the interspecific hybrid and amphiploid was tighter than that in the diploid parents, it is possible that this phenomenon may be involved in sorting and pairing of homologous chromosomes.  相似文献   

18.
A transformed cell line, B1, of cerebral endothelial origin from the Wistar-Kyoto male rat has chromatid and chromosome type bridges in virtually every cell. It exhibits various dicentric and polycentric chromosomes. Most dicentrics are symmetric isochromosomes. Certain isodicentrics are present in a fair segment of the cell population; however, almost all cells have some newly arising isodicentrics. The live cells show a lengthened prometaphase. Anaphase is also retarded possibly due to the occurrence of bridges. At anaphase some multicentrics split at only one centromere. When pulled to the two poles the unsplit centromeres and the distal chromosome segment form a side arm bridge. Another mechanism appears to be a total lack of separation of daughter centromeres at meta-anaphase (meiotic-like behavior of mitotic chromosomes). This is realized by the pulling of each of the two unsplit centromeres to opposite poles and results in bridges with both sister chromatids running parallel to each other. A break at corresponding weak points in the two sister chromatids followed by rejoining can form a dicentric isochromosome. A third mechanism, the breakage-fusion-bridge cycle, is also operative but would not produce isodicentrics. In the case of the first two mechanisms some or all centromeres apparently split between telophase and onset of the following DNA synthesis rather than at the usual time at late metaphase. These observations may suggest some previously unknown behavior of multicentric chromosomes during mitosis.  相似文献   

19.
Using single and dual colour fluorescence in situ hybridisation (FISH) combined with image analysis techniques the topographic characteristics of genes and centromeres in nuclei of human colon tissue cells were investigated. The distributions of distances from the centre-of-nucleus to genes (centromeres) and from genes to genes (centromeres to centromeres) were studied in normal colon tissue cells found in the neighbourhood of tumour samples, in tumour cell line HT-29 and in promyelocytic HL-60 cell line for comparison. Our results show that the topography of genetic loci determined in 3D-fixed cell tissue corresponds to that obtained for 2D-fixed cells separated from the tissue. The distributions of the centre-of-nucleus to gene (centromere) distances and gene to gene (centromere to centromere) distances and their average values are different for various genetic loci but similar for normal colon tissue cells, HT-29 colon tumour cell line and HL-60 promyelocytic cell line. It suggests that the arrangement of genetic loci in cell nucleus is conserved in different types of human cells. The investigations of trisomic loci in HT-29 cells revealed that the location of the third genetic element is not different from the location of two homologues in diploid cells. We have shown that the topographic parameters used in our experiments for different genetic elements are not tissue or tumour specific. In order to validate high-resolution cytometry for oncology, further investigations should include more precise parameters reflecting the state of chromatin in the neighbourhood of critical oncogenes or tumour suppresser genes.  相似文献   

20.
Dicentric chromosomes are rarely found, because they interfere with normal cell division causing chromosome instability. By in situ hybridization of region-specific heterochromatic yeast artificial chromosomes we have found that the artificially generated C(1)A chromosome of Drosophila melanogaster has two potential centromeres: one carries all the sequences of the centromere of the Y chromosome and the other carries only a part of the Y centromeric region that is rich in telomere-related sequences. Immunostaining with anti-Bub1 (a kinetochore-specific marker) shows that, in spite of the differences in sequence, both centromeres can be active although as a rule only one at a time. In a small fraction of the chromosomes centromere inactivation is incomplete, giving rise to true dicentric chromosomes. The centromere inactivation is clonally inherited, providing a new example of epigenetic chromosome imprinting and the possibility of genetically dissecting this process. The involvement of telomere-related sequences in centromere function is discussed. Received: 15 September 1999; in revised form: 21 November 1999 / Accepted: 24 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号