首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer programs that can be used for the design of syntheticgenes and that are run on an Apple Macintosh computer are described.These programs determine nucleic acid sequences encoding aminoacid sequences. They select DNA sequences based on codon usageas specified by the user, and determine the placement of basechanges that can be used to create restriction enzyme siteswithout altering the amino acid sequence. A new algorithm forfinding restriction sites by translating the restriction endonucleasetarget sequence in all three reading frames and then searchingthe given peptide or protein amino acid sequence with theseshort restriction enzyme peptide sequences is described. Examplesare given for the creation of synthetic DNA sequences for thebovine prethrombin-2 and ribonuclease A genes Received on October 18, 1988; accepted on December 9, 1988  相似文献   

2.
We have developed a program for the graphic representation andmanipulation of DNA sequences. The program (named CARTE fromthe French for ‘map’) is intended as a tool in theplanning and analysis of recombinant DNA experiments. DNA sequencesare represented as standard restriction maps, using any desiredcombination of restriction enzymes. Features of interest, suchas promoters or coding sequences, can be highlighted. The sequencecan be manipulated to mimic cloning, using deletions, insertionsor replacements at specified sites. This process is facilitatedby the simultaneous display of a graphic map of the entire sequence,a detailed picture of the work in progress, and a menu of functions. Received on November 17, 1986; accepted on March 12, 1987  相似文献   

3.
Evaluating Quantitative Variation in the Genome of ZEA MAYS   总被引:7,自引:2,他引:5       下载免费PDF全文
Genomic diversity within the species Zea mays has been examined by measuring the variation in the repetitive component of the nuclear genome among North American inbred lines and varieties. This was done by preparing a set of clones of repetitive maize sequences that differ in function, molecular arrangement and multiplicity and then using these as probes for quantitative hybridization to DNA from various maize genotypes. The comparison showed that the majority of repeated sequences are markedly variable in copy number among the ten maize strains tested.The clone sample contained the rDNA and 5S genes, the major repeat of the chromosome knobs, sequences functioning as origins of DNA replication in yeast (ARS sequences) and randomly cloned sequences of unknown function and chromosomal location. The sequences ranged in reiteration frequency from 200 to greater than 10(5) copies and included both tandemly arrayed and dispersed repeats. The copy numbers were measured by hybridizing labeled cloned sequences to aliquots of high molecular weight genomic DNA that were applied to nitrocellulose filters through a slotted template (slot blotting). The hybridization signal on an autoradiogram occurred in a narrow band that could be scored reliably with a densitometer. This provided a rapid method of determining the abundance of particular repeated sequences in individual plants and plant populations. Using this technique, we found that the copy number of repeated sequences of all types generally varied among the strains by two- to threefold, although at least one sequence showed no detectable variation. In contrast to the variability found between strains, individuals within an inbred line or variety were found to be indistinguishable in terms of specific sequence multiplicity. Each genotype has a different pattern of copy numbers for the set of repeated sequence clones, and this pattern is characteristic of all individuals of a particular genotype. The data also show that the copy number of each sequence varies independently. No strains had uniformly high or low copy numbers for the entire set of probes.  相似文献   

4.
本文介绍了一个在微机(IBM PC)上实现的、用于核酸顺序分析的计算机程序系统.该系统由三个层次和18个功能块构成,菜单及人机对话使得用户能较快地掌握和使用它.在编程中,采用了树结构、先进后出栈和稀疏矩阵等数据结构技巧,运用了Bayes法等统计分析方法,Kruskal算法和Floyd算法等一系列图论方法也被得到应用,这个软件系统的推出对于分子生物学研究具有一定的积极作用.  相似文献   

5.
S M Halling  N Kleckner 《Cell》1982,28(1):155-163
Transposon Tn10 inserts at many sites in the bacterial chromosome, but preferentially inserts at particular hotspots. We believe we have identified the target DNA signal responsible for this specificity. We have determined the DNA sequences of 11 Tn10 insertion sites and identified a particular 6 base pair (bp) symmetrical consensus sequence (GCTNAGC) common to those sites. The sequences at some sites differ from the consensus sequence but only in limited and well defined ways. The sequences at some sites differ from the consensus sequence than do sequences at other sites, and the consensus sequence and closely related sequences are generally absent from potential target regions where Tn10 is known not to insert. Other aspects of the target DNA can significantly influence the efficiency with which a particular target site sequence is used. The 6 bp consensus sequence is symmetrically located within the 9 bp target DNA sequence that is cleaved and duplicated during Tn10 insertion. This juxtaposition of recognition and cleavage sites plus the symmetry of the perfect consensus sequence suggest that the target DNA may be both recognized and cleaved by the symmetrically disposed subunits of a single protein, as suggested for type II restriction endonucleases. There is plausible homology between the consensus sequence and the very ends of Tn10, compatible with recognition of transposon ends and target DNA by the same protein. The sequences of actual insertion sites deviate from the perfect consensus sequence in a way which suggests that the 6 bp specificity determinant may be recognized through protein-DNA contacts along the major groove of the DNA double helix.  相似文献   

6.
ALMA, an editor for large sequence alignments   总被引:6,自引:0,他引:6  
S Thirup  N E Larsen 《Proteins》1990,7(3):291-295
A dedicated sequence editor, ALMA, was developed for aligning many sequences of proteins or RNA molecules or longer DNA fragments. Like previously published editors, ALMA is menu directed, screen oriented, and offers similarity and consensus display. ALMA has the additional features of collective movement of sequences, acceptance of input from many sources including structure files and databases, secondary structure display, and easy merging of alignments. In order to maintain sequence integrity and save disk space, gaps and sequences are stored separately. Automatic recovery of a session is possible. Finally, the program allows interaction between manual and automatic alignment.  相似文献   

7.
We have constructed the potential energy surfaces for all unique tetramers, hexamers and octamers in double helical DNA, as a function of the two principal degrees of freedom, slide and shift at the central step. From these potential energy maps, we have calculated a database of structural and flexibility properties for each of these sequences. These properties include: the values of each of the six step parameters (twist roll, tilt, rise, slide and shift), for each step of the sequence; flexibility measures for both decrease and increase in each property value from the minimum energy conformation for the central step; and the deviation from the path of a hypothetical straight octamer. In an analysis of structural change as a function of sequence length, we observe that almost all DNA tends to B-DNA and becomes less flexible. A more detailed analysis of octamer properties has allowed us to determine the structural preferences of particular sequence elements. GGC and GCC sequences tend to confer bistability, low stability and a predisposition to A-form DNA, whereas AA steps strongly prefer B-DNA and inhibit A-structures. There is no correlation between flexibility and intrinsic curvature, but bent DNA is less stable than straight. The most difficult deformation is undertwisting. The TA step stands out as the most flexible sequence element with respect to decreasing twist and increasing roll. However, as with the structural properties, this behavior is highly context-dependent and some TA steps are very straight.  相似文献   

8.
A method is described that allows the sequencing of polymerase chain reaction (PCR) products containing CACA repeats. The method was tested using a DNA polymorphism that exists at the 3' end of the dystrophin gene. This polymorphism consists of a variation in the length of a CACA dinucleotide repeat. Four alleles from a total of 16 individuals were sequenced at this locus after the DNA sequence had been amplified by the PCR. Five examples of each of the common alleles were sequenced. For each allele all five sequences were the same. The only example of a rare allele was also sequenced. The PCR products of DNA sequences containing dinucleotide repeats consist of a number of bands differing by 2 bp below the most intense main band. Previously, direct sequencing of the PCR products lead to ambiguities and smearing at and above the CACA repeat. In this paper, the main PCR band was cut out of a sequencing gel and directly sequenced to give a clear DNA sequence. Our results indicate that for a particular allele, all individuals had exactly the same DNA sequence. This implies that with the appropriate choice of oligonucleotide primers, polymorphisms could be detected without electrophoresis.  相似文献   

9.
Recently we have cloned the cDNAs and genomic DNAs for apopolysialoglycoproteins (apoPSGPs) of Salmo gairdneri (rainbow trout) [Sorimachi, H., Emori, Y., Kawasaki, H., Kitajima, K., Inoue, S., Suzuki, K., & Inoue, Y. (1988) J. Biol. Chem. 262, 17678-17684], and the sequence analyses have indicated that the mRNAs for apoPSGPs vary in length and contain different numbers of identical 39-bp repeating units encoding the tridecapeptide (Asp-Asp-Ala-Thr-Ser-Glu-Ala-Ala-Thr-Gly-Pro-Ser-Gly) as well as highly conserved sequences encoding pre-, pro-, and telo-peptide regions. In this study we isolated cDNA clones for yamame (cherry salmon, river resident form; Oncorhynchus masou ishikawai) apoPSGP using a genomic DNA fragment for rainbow trout apoPSGP as a probe. The nucleotide sequence analyses revealed that the structures of mRNAs for yamame apoPSGP including the noncoding regions are essentially identical to those for rainbow trout, showing 90% sequence identity. Within the repeating region, 4 bp out of the 39 were replaced, producing a different tridecapeptide, Asp-Asp-Ala-Thr-Ser-Glu-Ala-Ala-Thr-Gly-Pro-Ser-Ser. This tridecapeptide is unique to yamame and common among all cDNAs obtained from yamame. Genomic Southern blot analysis showed that the yamame apoPSGP genes constituted a multiple gene family with a similar gene organization to that of rainbow trout. Oligodeoxynucleotide probes (18 bases) synthesized based on specific sequences for the yamame repeating unit hybridized only to the yamame DNA and not to the rainbow trout DNA, and vice versa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sequence similarities among monkey ori-enriched (ors) fragments   总被引:4,自引:0,他引:4  
Nucleotide sequences have been determined for eight ors (ori-enriched sequence) fragments isolated from monkey DNA by a method that was designed to enrich for origins of DNA replication [Kaufmann et al., Mol. Cell. Biol. 5 (1985) 721-727]. Evidence has been presented that some or possibly all of these sequences can serve, albeit inefficiently, as oris in vivo [Frappier and Zannis-Hadjopoulos, Proc. Natl. Acad. Sci. USA 84 (1987) 6668-6672]. Two of the fragments were found to contain the long terminal repeat-like elements of the 'O-family' of moderately repetitive sequences that are present in human DNA as a transposon-like element [Paulson et al., Nature 315 (1985) 359-361]. Extensive pair-wise comparisons of the sequences failed to detect any statistically significant common sequences, except for long asymmetrically distributed A + T-rich stretches. Nonetheless, when the ors fragments were examined for the presence of published consensus sequences, seven of eight were found to contain the control sequence described by Dierks et al. [Cell 32 (1983) 695-706], and the same seven of eight were found to contain both the scaffold attachment region T consensus [Gasser and Laemmli, Cell 46 (1986) 521-530] and the minimal Saccharomyces cerevisiae autonomously replicating sequence consensus [e.g., Palzkill and Newlon, Cell 53 (1988) 441-450].  相似文献   

11.
12.
The frequency of oligonucleotides in mammalian genic regions   总被引:2,自引:0,他引:2  
The large body of nucleic acid sequence data now available offersa unique opportunity for the characterization of individualoligonucleotides which may be specific to sequence functionaldomains. We have prepared algorithms for the study of the frequencydistribution of all oligonucleotides of length 2–6 inDNA sequences. We have implemented them in the study of 634mammalian DNA sequences spanning 1.782 Mb, and have obtainedthe distribution of the ratio between the observed frequencyof oligonucleotides and their expected frequency based on independentnucleotide probabilities. We then studied the distribution ofoligonucleotides (or k-tuples) of each length in a subset of129 complete mammalian genes spanning 0.607 Mb. Eight distinctgenomic regions, namely 5'-non-transcribed, first exon, firstintron, intermediate exons, intermediate introns, last intron,last exon and 3non-transcribed, were considered. We observedthat some oligonucleotides show a statistical behaviour anda regional distribution similar to that of known signal sequences.Moreover the frequency distribution of oligonucleotides of length5 and 6 tends to become bimodal, indicating the existence ofa population of very frequent oligonucleotides. Received on June 21, 1988; accepted on October 14, 1988  相似文献   

13.
Abstract

This paper develops mathematical methods for describing and analyzing RNA secondary structures. It was motivated by the need to develop rigorous yet efficient methods to treat transitions from one secondary structure to another, which we propose here may occur as motions of loops within RNAs having appropriate sequences. In this approach a molecular sequence is described as a vector of the appropriate length. The concept of symmetries between nucleic acid sequences is developed, and the 48 possible different types of symmetries are described. Each secondary structure possible for a particular nucleotide sequence determines a symmetric, signed permutation matrix. The collection of all possible secondary structures is comprised of all matrices of this type whose left multiplication with the sequence vector leaves that vector unchanged. A transition between two secondary structures is given by the product of the two corresponding structure matrices. This formalism provides an efficient method for describing nucleic acid sequences that allows questions relating to secondary structures and transitions to be addressed using the powerful methods of abstract algebra. In particular, it facilitates the determination of possible secondary structures, including those containing pseudoknots. Although this paper concentrates on RNA structure, this formalism also can be applied to DNA  相似文献   

14.
This paper develops mathematical methods for describing and analyzing RNA secondary structures. It was motivated by the need to develop rigorous yet efficient methods to treat transitions from one secondary structure to another, which we propose here may occur as motions of loops within RNAs having appropriate sequences. In this approach a molecular sequence is described as a vector of the appropriate length. The concept of symmetries between nucleic acid sequences is developed, and the 48 possible different types of symmetries are described. Each secondary structure possible for a particular nucleotide sequence determines a symmetric, signed permutation matrix. The collection of all possible secondary structures is comprised of all matrices of this type whose left multiplication with the sequence vector leaves that vector unchanged. A transition between two secondary structures is given by the product of the two corresponding structure matrices. This formalism provides an efficient method for describing nucleic acid sequences that allows questions relating to secondary structures and transitions to be addressed using the powerful methods of abstract algebra. In particular, it facilitates the determination of possible secondary structures, including those containing pseudoknots. Although this paper concentrates on RNA structure, this formalism also can be applied to DNA.  相似文献   

15.
Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies.  相似文献   

16.
17.
The increasing number of whole genomic sequences of microorganisms has led to the complexity of genome-wide annotation and gene sequence comparison among multiple microorganisms. To address this problem, we have developed nWayComp software that compares DNA and protein sequences of phylogenetically-related microorganisms. This package integrates a series of bioinformatics tools such as BLAST, ClustalW, ALIGN, PHYLIP and PRIMER3 for sequence comparison. It searches for homologous sequences among multiple organisms and identifies genes that are unique to a particular organism. The homologous gene sets are then ranked in the descending order of the sequence similarity. For each set of homologous sequences, a table of sequence identity among homologous genes along with sequence variations such as SNPs and INDELS is developed, and a phylogenetic tree is constructed. In addition, a common set of primers that can amplify all the homologous sequences are generated. The nWayComp package provides users with a quick and convenient tool to compare genomic sequences among multiple organisms at the whole-genome level.  相似文献   

18.
This paper describes a multiple alignment method using a workstationand supercomputer. The method is based on the alignment of aset of aligned sequences with the new sequence, and uses a recursiveprocedure of such alignment. The alignment is executed in areasonable computation time on diverse levels from a workstationto a supercomputer, from the viewpoint of alignment resultsand computational speed by parallel processing. The applicationof the algorithm is illustrated by several examples of multiplealignment of 12 amino acid and DNA sequences of HIV (human immunodeficiencyvirus) env genes. Colour graphic programs on a workstation andparallel processing on a supercomputer are discussed. Received on April 26, 1988; accepted on July 7, 1988  相似文献   

19.
20.
The EcoRV restriction endonuclease cleaves DNA not only at its recognition sequence but also at most other sequences that differ from the recognition site by one base pair. Compared to the reaction at the recognition site, the reactions at noncognate sites are slow but 1 out of the 12 noncognate sites on the plasmid pAT153 is cleaved more than 50 times faster than any other. The increase in the reaction rate at the preferred noncognate site, relative to other sites, was caused by the DNA sequences in the 4 base pairs from either side of the site. For enhanced activity by EcoRV, particular bases were needed immediately adjacent to the site, inside the DNA-protein complex. At these loci, the protein interacts with the phosphate groups in the DNA and the flanking sequence may control the activity of the enzyme by determining the conformation of the DNA, thus aligning the phosphate contacts. But the preferential cleavage also depended on sequences further away from the site, at loci outside the complex. At external positions, beyond the reach of the protein, the EcoRV enzyme required flanking sequences that give rise to flexibility in DNA conformation. These may facilitate the distortion of the DNA required for catalysis by EcoRV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号