首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation.  相似文献   

2.
Luteinizing hormone (LH) secretory patterns were characterized in adult male and female rats exposed to ethanol during the last week of fetal life. Gonadectomized fetal alcohol exposed (FAE) males and females had significantly reduced plasma LH titers as compared to those of pair-fed (PF) controls. The phasic afternoon LH secretory response to estrogen and progesterone priming was also significantly reduced in FAE females. These differences do not appear to be a result of altered pituitary sensitivity to luteinizing hormone releasing hormone (LHRH), since the infusion of LHRH resulted in an equal response in PF and FAE females. Subsequent characterization of the episodic pattern of LH secretion in FAE males revealed significantly reduced mean LH level as well as a decreased pulse amplitude and frequency when compared to PF males. Taken together, these data indicate that some of the central mechanisms controlling pituitary LH secretion are altered by prenatal exposure to alcohol.  相似文献   

3.
Increasing evidence associates environmental challenges early in life with permanent alterations of physiological functions in adulthood. These changes in fetal environment can trigger physiological adaptations by the fetus, called fetal programming, which may be beneficial before birth but permanently influence the physiology of the organism. In this study, we investigated the potential connection between alcohol-induced decreased maternal thyroid function and the hypothalamic-pituitary-thyroid (HPT) function of adult rat offspring. Plasma 3,5,3'-triiodothyronine (T(3)), thyroxine (T(4)), and thyroid-stimulating hormone (TSH) levels were decreased in alcohol-consuming (E) dams on gestational day 21 compared with ad libitum- (C) and pair-fed (PF) controls. No significant differences were found in HPT function in young offspring (3 wk of age) between diet groups. However, adult fetal alcohol-exposed (FAE) offspring had significantly decreased levels of T(3) along with elevated TSH compared with control offspring. T(4) administration to the mother did not normalize the hypothyroid state of the adult FAE offspring. Interestingly, administration of T(4) to control pregnant dams decreased plasma T(3) of the adult female offspring only, whereas T(4) together with maternal alcohol consumption or pair-feeding led to decreased TSH and T(4) in the adult female offspring. Our results suggest that ethanol consumption and T(4) administration alter maternal HPT function, leading to prenatally programmed permanent alterations in the thyroid function of the adult offspring.  相似文献   

4.
W E Sonntag  R L Boyd 《Life sciences》1988,43(16):1325-1330
The purpose of this study was to determine whether the generalized catabolic effects of chronic ethanol may be associated with a decline in plasma levels of insulin-like growth factor-1 (IGF-1). Male Sprague-Dawley rats were fed a liquid diet containing 5% ethanol or pair-fed a diet made isocaloric with maltose-dextrin. Animals were maintained on this diet for either 12 days or 4.5 months. Another group of animals were fed control diet ad libitum for 2 weeks. After 12 days of feeding, plasma concentrations of IGF-1 in ad libitum fed rats were 771 +/- 41 ng/ml which was greater than concentrations in either pair-fed (595 +/- 23 ng/ml) or ethanol-fed (680 +/- 40 ng/ml) rats (P less than 0.05). After 4.5 months of feeding, plasma levels of IGF-1 in ad libitum and pair-fed rats were similar to the 12 day study (736 +/- 56 and 607 +/- 26 ng/ml, respectively). However, a significant decrease in plasma levels of IGF-1 was observed in ethanol-fed animals over the 4.5 month period (551 +/- 28 ng/ml, P less than 0.05). Results of a similar study in rats fed a high-fat diet for 4.5 months were similar to those found with the low-fat diet. These results indicate that 1) dietary restriction of the type routinely used in this pair-feeding regimen decreases plasma levels of IGF-1, 2) chronic ethanol feeding further decreases plasma IGF-1 levels compared to pair-fed rats, 3) the effects of ethanol on IGF-1 concentrations are not modified by dietary fat, and 4) the effects on IGF-1 are not directly dependent on elevated plasma ethanol concentrations. Our results suggest that IGF-1 secreting cells in the liver may be progressively damaged by chronic ethanol feeding.  相似文献   

5.
Insulin binding to liver membranes has been studied in term fetuses of rats fed ethanol-containing liquid diet during pregnancy . Pair-fed and ad libitum-fed controls received liquid diet in which maltose-dextrins were substituted isocalorically for ethanol. Food consumption and body weigh gain of ethanol- imbibing dams were 35% and 70% less than their ad libitum counterparts respectively. Ethanol-fed rats also exhibited less gain in body weight than pair-fed controls despite isocalorically equivalent food intake. The number of live pups was not different among the various groups; however, liver weight of fetuses exposed to ethanol in utero was 47% less than those of the pups of ad libitum control dams and 28% less than those of the offspring of pair-fed control rats. Insulin binding to liver membranes of fetuses exposed to ethanol in utero was lower than that of ad libitum controls but was not significantly different from that of the pair-fed control animals. Average affinity profiles showed a reduction in K at all levels of receptor occupancy in the fetuses of ethanol-fed rats. For fetuses of the pair-fed group, K was reduced only at fractional occupancy below 20% but not at higher fractional occupancy. Because of the similarity of insulin binding in the fetuses of the ethanol-fed rats and their pair-fed counterparts, effects of ethanol on insulin binding cannot account for the reduced hepatic glycogen stores previously reported in term fetuses.  相似文献   

6.
Rats born to well-fed mothers (20% protein diet ad libitum), protein-restricted mothers (7.5% protein diet ad libitum) or pair-fed with protein-restricted mothers were killed on days 0, 7, 14, 21, 28 and 35 and activities of the two enzymes of neurotransmitter synthesis, tryptophan-5-hydroxylase (EC 1.14.16.4) and tyrosine hydroxylase (EC 1.14.16.2) were assayed. Enzyme activities in normal animals were low at birth and progressively increased to reach adult levels by day 15. Protein-restricted and pair-fed animals also showed a similar pattern. However, significantly higher activities were observed from day 15 onwards in both experimental groups.  相似文献   

7.
Alcoholic liver disease is multifactorial and oxidative stress is believed to play an intimate role in the initiation and progression of this pathology. The goals of this study were to investigate the effect of chronic ethanol treatment on inducing hepatic oxidative stress and peroxiredoxin 6 expression. After 9 weeks of treatment with an ethanol-containing diet, significant increases in serum ALT activity, liver to body weight ratio, liver triglycerides, CYP2E1 protein expression, and CYP2E1 activity were observed. Chronic ethanol feeding resulted in oxidative stress as evidenced by decreases in hepatic glutathione content and increased deposition of 4-hydroxynonenal and 4-oxononenal protein adducts. In addition, novel findings of decreased PRX6 protein and mRNA and increased levels of carbonylated PRX6 protein were observed in the ethanol-treated animals compared to the pair-fed controls. Lastly, NF-kappaB activity was found to be significantly increased in the ethanol-treated animals. Concurrent with the increase in NF-kappaB activity, decreases in both MEK1/2 and ERK1/2 phosphorylation were also observed in the ethanol-treated animals compared to the pair-fed controls. Together, these data demonstrate that chronic ethanol treatment results in oxidative stress, implicating NF-kappaB activation as an integral mechanism in the negative regulation of PRX6 gene expression in the mouse liver.  相似文献   

8.
Chronic ethanol consumption causes a DNA repair deficiency. This was demonstrated in Sprague-Dawley rats injected with 14C-labeled dimethylnitrosamine after being pair-fed isocaloric, ethanol, or carbohydrate control diets for 4 weeks. Hepatic DNA was isolated from rats killed at intervals over a 36 hour period after administration of the nitrosamine and concentrations of alkylated guanine derivatives were measured. While N7-methylguanine was lost at equivalent rates from the DNA of both diet groups, 06methylguanine, a promutagenic lesion, persisted at higher levels for longer periods of time in the DNA from the alcohol-fed animals.  相似文献   

9.
Chronic ethanol consumption decreases the synthesis of all 13 polypeptides encoded by the hepatic mitochondrial genome. This alteration in mitochondrial protein synthesis is due to modifications in mitochondrial ribosomes. In the current study, the nature of these alterations was investigated by determining some of the hydrodynamic properties, namely sedimentation coefficient, shape, and mass of mitochondrial ribosomes. The effect of ethanol consumption on the capacity for mitochondrial ribosomes to translate proteins was also determined using an in vitro Poly (U) assay system. Rats were fed the Lieber-DeCarli diet for 31 days with ethanol as 36% of total calories. The sedimentation coefficient, measured by sedimentation velocity analyses, was slightly, but significantly lower in ethanol mitochondrial ribosomes (53.2 +/- 0.5S) when compared with pair-fed controls (54.1 +/- 0.5S) (P = 0.04). Mitochondrial ribosomes from ethanol-fed animals also had a greater tendency to dissociate into subunits. The diffusion coefficient, determined by dynamic light scattering, was lower in mitochondrial ribosomes from ethanol-fed rats than pair-fed controls and this indicated a significantly greater diameter for ethanol ribosomes (42.1 +/- 0.2 nm) than for preparations from pair-fed controls (39.1 +/- 0.5 nm; P = 0.008). These alterations to ethanol mitochondrial ribosomes occurred despite no change in molecular mass, which suggested a significant ethanol-related shape change in the ribosomes. The translation capacity of mitochondrial ribosome preparations from ethanol-fed animals was markedly reduced due to dissociation of the monosome into light and heavy subunits. In summary, these observations demonstrate that chronic ethanol consumption causes significant structural and functional alterations to mitochondrial ribosomes. The loss in ribosome function leads to impaired mitochondrial polypeptide synthesis and is an example of a pathology giving rise to an alteration in the mitochondrial ribosome structure.  相似文献   

10.
The influence of chronic ethanol ingestion on hepatic acyl-CoA: cholesterol acyltransferase activity was investigated to determine the relationship between alcohol intake and cholesterol ester accumulation. Rats were given nutritionally complete liquid diets supplemented with 6.3% ethanol or an isocaloric equivalent of dextrin-maltose for 5 weeks. During this period, the hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed male rats remained constant, whereas the same activity in pair-fed controls as well as chow-fed rats exhibited a 30% decrease in activity. Unlike alcohol-fed male rats, the hepatic acyl-CoA: cholesterol acyltransferase activity of female rats decreased by approximately 30% by the fifth week of ethanol ingestion. Despite the fact that the gender of the animals led to disparate levels of acyl-CoA: cholesterol acyltransferase activity in response to ethanol ingestion, similar levels of cholesteryl ester accumulation were observed. The altered levels of acyl-CoA: cholesterol acyltransferase activity caused no significant change in the cholesterol concentration, cholesterol/phospholipid ratio, phospholipid fatty acid composition, or the membrane fluidity of the hepatic microsomes. We conclude that the altered hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed female rats cannot be directly responsible for ethanol-induced accumulation of cholesteryl esters.  相似文献   

11.
That enzyme fractions derived from animals chronically fed alcohol can alter the metabolism of carcinogenic xenobiotic compounds has been documented. To further understand this relationship the mutagenicity of 3 aromatic amines was determined in the Ames test, employing activation systems derived from rats maintained on an alcohol-containing liquid diet, an isocaloric control liquid diet or Aroclor 1254-pretreated animals fed standard laboratory chow. Depending upon protein and substrate concentrations, S9 from ethanol-fed rats was 30-50% less efficient than S9 from pair-fed rats in activating arylamines (2-aminofluorene, 2-aminoanthracene and 2-acetylaminofluorene) to mutagens in Salmonella typhimurium TA98 and TA100. Cytosolic fractions from ethanol-fed animals always resulted in greater arylamine activation than that of controls whereas the opposite was true of the microsomal compartment in which the ethanol-treated group was consistently less active than the controls. The cytosolic N-acetyltransferase activities with respect to 2 different substrates, isoniazid and 2-aminofluorene, were unaffected by ethanol consumption, indicating that this activity probably does not account for the different activation profiles exhibited by the ethanol and pair-fed cytosolic systems. Both the cytosolic and microsomal compartments are required for maximal expression of the mutagenicity of each arylamine however, each compartment can activate arylamines independently of the other. Reconstituting cytosol with microsomes from ethanol- and pair-fed rats, but not Aroclor-pretreated rats, resulted in a synergistic activation of the aromatic amines and displayed an effect similar to that of S9. Compared to Aroclor pretreatment and pair-fed controls, microsomes from ethanol-fed rats displayed the least capacity for activating any of the arylamines to mutagens. Microsomes from Aroclor-pretreated rats accounted for at least 80% of the S9-mediated activation of each of the arylamines to mutagenic metabolites which was in marked contrast to the contribution of the microsomal fractions to the S9 activity in the ethanol- (5-20% of S9 activity) and pair-fed systems (22-30% of S9 activity). The data indicate that 2 opposing reactions occur in S9, a cytosolic activity that augments and a microsomal activity that attenuates the mutagenicity of arylamines. Both activities are modified by ethanol consumption and Aroclor pretreatment.  相似文献   

12.
Eighteen male Wistar rats weighing approximately 200 g were divided into three groups of six animals each. The experimental animals were maintained on nutritionally complete diets in which ethanol comprised 45% of the available energy. Control animals were pair-fed an equivalent diet in which sucrose was substituted isocalorically for ethanol. An additional control group received unlimited access to standard pelleted laboratory food and water. The investigations were carried out over 24 weeks. The effects on phospholipid, monogalactosyl glycolipid, and ganglioside composition after 24 weeks of feeding 43% alcohol were studied. There is abundant evidence that the changes in the cerebellum membrane phospholipids (phosphatidylethanolamine and phosphatidylcholine), gangliosides (GT1b), and myelin lipids (phosphatidylserine, sphingophospholipid, phosphatidylinositol, cerebrosides with hydroxy fatty acids, sulfoglycolipids, and monosialoganglioside GM1) occur as a result of chronic ethanol treatment.  相似文献   

13.
The proteasome and autophagy are two major intracellular protein degradation pathways and the regulation of each by ethanol metabolism affects cellular integrity. Using acute and chronic ethanol feeding to mice in vivo, and precision-cut rat liver slices (PCLS) ex vivo, we examined whether ethanol treatment altered these proteolytic pathways. In acute studies, we gave C57Bl/6 mice either ethanol or phosphate-buffered saline (PBS) by gastric intubation and sacrificed them 12h later. PCLS were exposed to 0 or 50mM ethanol for 12 and 24h with or without 4-methylpyrazole (4MP). In chronic studies we pair-fed control and ethanol liquid diets for 4-6 weeks to transgenic mice, expressing the green fluorescent protein (GFP) fused to the autophagic marker, microtubule associated protein-1 light chain 3 (LC3). Acute ethanol administration elevated autophagosomes (AVs), as judged by a 1.5-fold increase in LC3II content over PBS-gavaged control mice. Hepatic proteasome activity was unaffected by this treatment. Compared with controls, ethanol exposure for 12 and 24h to PCLS inhibited proteasome activity by 1.5- to 3-fold and simultaneously enhanced AVs by 2- to 5-fold. The decrease in proteasome activity and the rise in AVs both depended on ethanol oxidation as its inhibition by 4-methylpyrazole (4MP) blocked both proteasome inhibition and AV induction. Hepatocytes from mice chronically consuming ethanol exhibited a 1.6-fold decline in proteasome activity, and a 4-fold rise in GFP-LC3 puncta compared with pair-fed control mice. When we exposed hepatocytes from these animals to MG262, a proteasome inhibitor, LC3II puncta per cell further increased 2- to 5-fold over untreated cells. Conclusion: Our findings demonstrate that ethanol metabolism generates oxidants, the levels of which differentially influence the activities of the proteasome and autophagy.  相似文献   

14.
Several previous studies have indicated that chronic ingestion of ethanol exerts harmful effects on bones. However, few data are available concerning the effects of ethanol on the ultrastructure of bone. To further elucidate the effects of ethanol on bone, we studied the morphology of femur in golden hamsters after long-term treatment with ethanol. Six-week-old male hamsters were divided into 4 groups. Ethanol-treated animals were given ethanol at a concentration of 7% with food and water freely available, whereas the pair-fed animals (weight-matched to ethanol hamsters) had tap water available as the only drinking fluid. The femur weight, blood ethanol and serum calcium concentrations were determined after 3 and 5 months. The bone mineral density (BMD) of the whole body was measured before and after the experiment. Femurs of both sides were dissected and processed for morphometric measurement, light microscopy, scanning and transmission electron microscopy. In the ethanol-treated hamsters, BMD of the whole body and the weight of femur tended to decrease when compared with those of the controls. Light microscopy and scanning electron microscopy showed that the trabecula in the distal end of the femur from ethanol-treated hamsters were thinner than those of the controls. We also observed the disrupted swollen mitochondria of the femoral osteoblasts and osteocytes in the ethanol-treated hamsters. No significant difference in serum calcium levels and femoral osteoclasts was found. These results indicate that long-term treatment with ethanol results in disruption of femoral osteoblasts and reduction of bone mass in trabecular bone.  相似文献   

15.
Seo HJ  Jeong KS  Lee MK  Park YB  Jung UJ  Kim HJ  Choi MS 《Life sciences》2003,73(7):933-946
The current study was performed to investigate the effect of naringin supplements on the alcohol, lipid, and antioxidant metabolism in ethanol-treated rats. Male Sprague-Dawley rats were randomly divided into six groups (n = 10) based on six dietary categories: ethanol and naringin-free, ethanol (50 g/L) plus low-naringin (0.05 g/L), ethanol plus high-naringin (0.125 g/L), and three corresponding pair-fed groups. The pair-fed control rats received an isocaloric diet containing dextrin-maltose instead of ethanol for 5 wks. Among the ethanol treated groups, the naringin supplements significantly lowered the plasma ethanol concentration with a simultaneous increase in the ADH and/or ALDH activities. However, among the ethanol-treated groups, naringin supplementation resulted in a significant decrease in the hepatic triglycerides and plasma and hepatic total cholesterol compared to that in the naringin-free group. Naringin supplementation significantly increased the HDL-cholesterol and HDL-C/total-C ratio, while lowering the AI value among the ethanol-treated groups. Hepatic lipid accumulation was also significantly reduced in the naringin-supplemented groups compared to the naringin-free group among the ethanol-treated groups, while no differences were found among the pair-fed groups. Among the ethanol-treated groups, the low-naringin supplementation resulted in a significant decrease in the levels of plasma and hepatic TBARS, whereas it resulted in higher SOD and GSH-Px activities and gluthathion levels in the liver. Accordingly, naringin would appear to contribute to alleviating the adverse effect of ethanol ingestion by enhancing the ethanol and lipid metabolism as well as the hepatic antioxidant defense system.  相似文献   

16.
Transketolase and pyruvate changes were studied in rats infected with Trypanosoma lewisi and fed complete, thiamine-deficient and pair-fed control diets. Regardless of the dietary group, marked increases in pyruvate levels were observed in the infected animals. There were no significant differences in erythrocyte transketolase activity of rats given a full complement diet. Significant decreases, however, were observed in the transketolase activity of pair-fed and thiamine deficient rats. The greater decreases occurred in the infected animals.  相似文献   

17.
Abstract— Whole brain 5-hydroxytryptamine (5-HT) levels were determined after 3 weeks in rats chronically consuming ethanol, in pair-fed controls, and in pair-fed controls consuming sucrose in quantities isocaloric to the ethanol of the first group. A cryogenic harvesting and storage technique was developed to insure accurate measurement of whole rat brain 5-HT. It was found that whole brain 5-HT is completely stable for at least 16 days after decapitation into liquid N2 followed by storage of frozen whole heads at – 70°C. Using this technique and spectrophotofluorometric 5-HT assays, no differences were found in whole brain 5-HT among the three groups. Chronic consumption of ethanol and sucrose apparently lead to no chronic change in rat whole brain 5-HT.  相似文献   

18.
The effect of chronic ethanol consumption during pregnancy and lactation on thyrotropin releasing hormone (TRH) metabolism was investigated in the hypothalamus and limbic areas of female rats and their weaned pups. Pregnant female rats received ethanol or isocaloric glucose solution during pregnancy either alone, or also during the 3 weeks of lactation. Thyrotropin (TSH) and corticosterone levels were measured in serum; TRH and TRH-gly concentrations were determined in hypothalamus, hippocampus, n.accumbens, frontal cortex and amygdala of dams and pups at 21 days after parturition. Ethanol or glucose consumption during pregnancy and lactation produced a decrease in TSH levels compared with control animals fed at libitum; water replacement during lactation normalized TSH levels only in glucose-fed dams. Pups from ethanol or pair-fed dams showed low weight and increased TSH levels compared with normal rats. Variations in TRH metabolism were detected in limbic areas. Chronic ethanol caused a decrease in the levels of TRH in the hippocampus and frontal cortex of dams. In contrast, glucose chronic ingestion increased TRH content specifically in n.accumbens and amygdala of dams. Most of the variations in TRH content of limbic areas of pups were not specific for glucose or ethanol treatment and correlated with the deleterious effect of the mother's thyroid condition, although some differences were observed depending on pup's gender. These results support the involvement of TRHergic neurons in the limbic system of the female rat exposed to alcohol or glucose during pregnancy and lactation.  相似文献   

19.
Testosterone, seven of its potential precursors, three of its metabolites and estradiol were analyzed in testes from rats given ethanol for 23 days in a nutritionally adequate liquid diet. The results were compared to those obtained with pair-fed control rats. The concentrations of pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione and testosterone were markedly lowered in four of the five rats given ethanol. The concentrations of the other 3 beta-hydroxy-delta 5 steroids and estradiol were unchanged, resulting in significantly increased ratios between 17-hydroxypregnenolone and 17-hydroxyprogesterone (P less than 0.025) and between androstenediol and testosterone (P less than 0.025) in the ethanol-treated rats. The results indicate that chronic ethanol administration reduces formation of testosterone by affecting a step prior to pregnenolone. There may also be an effect on the conversion of some 3 beta-hydroxy-delta 5 to the corresponding 3-oxo-delta 4 steroids. The levels of testosterone and three other steroids in testes of rats given the liquid diet were significantly lower than those in testes of animals fed a standard rat chow. This indicates a dietary influence on testicular steroid concentrations.  相似文献   

20.
Effects of chronic alcohol treatment have been investigated on the rates of extramitochondrial NADH utilization by hepatic mitochondria in the presence or absence of “malate-aspartate shuttle,” oxidation of ethanol, α-glycerophosphate, and the activity of succinic dehydrogenase, along with the changes in the intrahepatic distribution of aspartate aminotransferase. The rates of blood alcohol clearance, hepatic alcohol dehydrogenase activity, and NADPH-dependent microsomal ethanol oxidation were also studied after different time intervals of alcohol withdrawal from chronically alcohol-fed animals. Hepatic mitochondria from chronically ethanol-fed mice (ethanol withheld 20 hr before sacrifice) utilized extramitochondrial NADH at rates 25–40% higher than the corresponding pair-fed controls. Addition of malateaspartate shuttle components to mitochondria from control and ethanol-fed groups resulted in 70 and 90% stimulation of NADH utilization, respectively. Mitochondria from both groups showed respiratory control upon ADP addition (state 3). Preincubation with amino-oxyacetate or hydrazine, which inhibit aspartate aminotransferase activity, prevented the stimulatory effect of malate-aspartate shuttle on NADH utilization. Mitochondria from livers of chronic ethanol-fed mice in the presence of reconstituted malate-aspartate shuttle showed 30–40% higher utilization of ethanol than the corresponding pair-fed control animals. The rate of mitochondrial α-glycerophosphate utilization by alcohol-fed animals was significantly higher than the control group. Succinic dehydrogenase activity measured as an index of mitochondrial permeability in the absence of Ca2+ showed 85% higher activity in alcoholtreated group than the control animals. Chronic ethanol feeding for 4 weeks resulted in an increase in the activity of hepatic aspartate aminotransferase in the cytoplasmic fraction and a corresponding decrease in the mitochondrial fraction. Alcohol withdrawal from chronic alcohol-fed animals resulted in a decrease in the blood alcohol clearance rate after 10 days. Furthermore, a lack of correlation was observed between the rates of blood alcohol clearance and the activity of hepatic alcohol dehydrogenase on one hand, and between the rates of blood alcohol clearance and the microsomal ethanol-oxidizing activity on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号