首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted drug delivery is an important research area in specific therapy. Transferrin-conjugated nanoparticles are an attractive formulation as a vehicle for specific cellular uptake and targeted drug delivery. In this report, atomic force microscopy imaging was used to visualize the process of cellular uptake of transferrin-coupled gold nanoparticles on the surfaces of live cells for the first time. High-resolution images were captured, showing the endocytosis of transferrin-conjugated nanoparticles taking place during the process of internalization. This specific transferrin-mediated nanoparticle uptake was validated by confocal scanning imaging and transferrin competition experiments.  相似文献   

2.
Nanoparticles (NPs) are considered attractive carriers for gene therapy and drug delivery owing to their minor toxic effect and their ability to associate and internalize into mammalian cells. In this study, we compared the endocytosis into HeLa cells of NPs exposing either a negative or positive charge on their surface. The exposed charge significantly affected their ability to internalize as well as the cellular endocytosis mechanism utilized. Negatively charged NPs show an inferior rate of endocytosis and do not utilize the clathrin-mediated endocytosis pathway. On the other hand, positively charged NPs internalize rapidly via the clathrin-mediated pathway. When this pathway is blocked, NPs activate a compensatory endocytosis pathway that results in even higher accumulation of NPs. Overall, the addition of a positive charge to NPs may improve their potential as nanoparticulate carriers for drug delivery.  相似文献   

3.
The involvement of the clathrin-mediated endocytic internalization route in the uptake of cholera toxin (CT) was investigated using different cell lines, including the human intestinal Caco-2 and T84 cell lines, green monkey Vero cells, SH-SY5Y neuroblastoma cells and Madin-Darby canine kidney cells. Suppression of the clathrin-mediated endocytic pathway by classical biochemical procedures, like intracellular acidification and potassium depletion, inhibited cholera toxin uptake by up to about 50% as well as its ability to raise intracellular levels of cAMP. Also prior exposure of these cell types to the cationic amphiphilic drug chlorpromazine reduced the functional uptake of cholera toxin, even to a greater extent. These effects were dose- and cell type-dependent, suggesting an involvement of clathrin-mediated endocytosis in the functional uptake of cholera toxin. For a more straightforward approach to study the role of the clathrin-mediated uptake in the internalization of cholera toxin, a Caco-2(eps-) cell line was exploited. These Caco-2(eps-) cells constitutively suppress the expression of epsin, an essential accessory protein of clathrin-mediated endocytosis, thereby selectively blocking this internalization route. CT uptake was found to be reduced by over 60% in Caco-2(eps-) paralleled by a diminished ability of CT to raise the level of cAMP. The data presented suggest that the clathrin-mediated uptake route fulfils an important role in the functional internalization of cholera toxin in several cell types.  相似文献   

4.
The mechanisms associated with the cellular internalization of nanomedicines must be carefully considered when designing drug- and vaccine-delivery systems. The cellular fate and effects of nanomedicines depend to a large extent on the cell uptake routes. A self-assembled mannan nanogel is developed as a vaccination platform for antigen and adjuvant delivery. The mannan nanogel uptake by murine bone-marrow-derived macrophages is found to be time-, concentration-, and energy-dependent, involving mannose-receptor-mediated phagocytosis and clathrin-mediated endocytosis. The nanogel is also visualized in the cytosol suggesting endolysosomal escape. These results indicate that mannan nanogel is a promising versatile carrier for intracellular delivery of vaccines or therapeutic agents.  相似文献   

5.
L1 is a neural cell adhesion molecule critical for neural development. Full-length L1 (L1(FL)) contains an alternatively spliced cytoplasmic sequence, RSLE, which is absent in L1 expressed in nonneuronal cells. The RSLE sequence follows a tyrosine, creating an endocytic motif that allows rapid internalization via clathrin-mediated endocytosis. We hypothesized that L1(FL) would internalize more rapidly than L1 lacking the RSLE sequence (L1(Delta)(RSLE)) and that internalization might regulate L1-mediated adhesion. L1 internalization was measured by immunofluorescence microscopy and by uptake of (125)I-anti-rat-L1 antibody, demonstrating that L1(FL) is internalized 2-3 times faster than L1(Delta)(RSLE). Inhibition of clathrin-mediated endocytosis slowed internalization of L1(FL) but did not affect initial uptake of L1(Delta)(RSLE). To test whether L1 endocytosis regulates L1 adhesion, cell aggregation rates were tested. L1(Delta)(RSLE) cells aggregated two times faster than L1(FL) cells. Inhibition of clathrin-mediated endocytosis increases the aggregation rate of the L1(FL) cells to that of L1(Delta)(RSLE) cells. Our results demonstrate that rapid internalization of L1 dramatically affects L1 adhesion.  相似文献   

6.
Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K(+) depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-beta-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.  相似文献   

7.
Synthetic amphiphiles are widely used as a carrier system. However, to match transfection efficiencies as obtained for viral vectors, further insight is required into the properties of lipoplexes that dictate transfection efficiency, including the mechanism of delivery. Although endocytosis is often referred to as the pathway of lipoplex entry and transfection, its precise nature has been poorly defined. Here, we demonstrate that lipoplex-mediated transfection is inhibited by more than 80%, when plasma membrane cholesterol is depleted with methyl-beta-cyclodextrin. Cholesterol replenishment restores the transfection capacity. Investigation of the cellular distribution of lipoplexes after cholesterol depletion revealed an exclusive inhibition of internalization, whereas cell-association remained unaffected. These data strongly support the notion that complex internalization, rather than the direct translocation of plasmid across the plasma membrane, is a prerequisite for accomplishing effective lipoplex-mediated transfection. We demonstrate that internalized lipoplexes colocalize with transferrin in early endocytic compartments and that lipoplex internalization is inhibited in potassium-depleted cells and in cells overexpressing dominant negative Eps15 mutants. In conjunction with the notion that caveolae-mediated internalization can be excluded, we conclude that efficient lipoplex-mediated transfection requires complex internalization via the cholesterol-dependent clathrin-mediated pathway of endocytosis.  相似文献   

8.
Lactoferrin (Lf) is a major iron-binding and multi-functional protein in exocrine fluids such as breast milk and mucosal secretions. The functions of Lf appear dependent upon the iron saturation of the Lf protein and are postulated to be mediated through Lf internalization by a Lf receptor (LfR). However, mechanisms by which LfR mediates Lf internalization in enterocytes are unknown. We now demonstrate that a LfR previously cloned from the small intestine mediates Lf endocytosis in a human enterocyte model (Caco-2 cells). LfR was detected at the plasma membrane by cell surface biotinylation; both apo-Lf and holo-Lf uptake were significantly inhibited in cells transfected with LfR siRNA. Treatments of hypertonic sucrose and clathrin siRNA and co-immunoprecipitation of LfR with clathrin adaptor AP2 indicate that LfR regulates Lf endocytosis via clathrin-mediated endocytosis. Although both iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) enter Caco-2 cells via a similar mechanism and no significant differences were observed in the binding and uptake of apo- and holo-Lf in Caco-2 cells, apo-Lf but not holo-Lf stimulates proliferation of Caco-2 cells. Interestingly, apo-Lf stimulated extracellular signal-regulated mitogen-activated protein kinase (ERK) cascade to a significantly greater extent than holo-Lf and the apo-Lf induced proliferation was significantly inhibited by an ERK cascade inhibitor (U0126) and clathrin siRNA. Taken together, our data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin-mediated endocytosis. The differential effects of apo- and holo-Lf are not due to differences in cellular internalization mechanisms.  相似文献   

9.
Arrestins bind phosphorylated G-protein coupled-receptors (GPCR) and inhibit agonist-induced signal transduction by uncoupling the receptors from their cognate G-proteins. β-arrestins also act as adaptors that target GPCR to endocytic clathrin-coated vesicles. Unlike cellular GPCRs, the human cytomegalovirus GPCRs and chemokine receptor, US28, shows constitutive signal transduction activity and undergoes constitutive endocytosis. To determine the role of β-arrestins in US28 trafficking, we used embryonic fibroblasts derived from β-arrestin knockout mice. In these cells, the internalization of transfected β2-adrenergic receptor and of the cellular chemokine receptor CCR5 was impaired. By contrast, US28 distribution was unaffected, and US28-mediated RANTES internalization was similar in normal and knockout cell lines. To investigate whether a clathrin-mediated pathway is involved in US28 endocytosis, we developed small interfering RNA against the μ2-adaptin subunit of the AP-2 adaptor complex. In cells transfected with μ2 small interfering RNA transferrin endocytosis was severely inhibited. Antibody-feeding experiments and biochemical analysis showed that US28 internalization was also inhibited. Together, these data indicate that US28 endocytosis occurs via a clathrin-mediated mechanism but is independent of β-arrestins .  相似文献   

10.
Several reports have shown a fast and efficient translocation of TAT-modified lipoplexes and particles into the cell cytoplasm. However, neither the uptake mechanism nor the biological effect of TAT-modified lipoplexes has been studied in detail. In this report we show that the increase in gene transfer of TAT-modified lipoplexes depends on the amount of cationic lipid in the lipoplexes and on the way TAT was coupled to the lipoplexes. We demonstrate that the cellular uptake of both TAT-modified and unmodified lipoplexes is very fast and, in contrast to previous publications, temperature-dependent. Additionally, after internalization TAT-modified as well as unmodified lipoplexes end up in lysosomal vesicles, indicating the involvement of clathrin-mediated endocytosis. Furthermore, chlorpromazine, a specific inhibitor of clathrin-dependent endocytosis, strongly inhibits the cellular uptake and biological activity of both the TAT-modified and unmodified lipoplexes. We also found that the uptake and biological activity of these lipoplexes are diminished when cholesterol in the cell membrane was bound by filipin, an inhibitor of the lipid-raft mediated pathway. Considering these data, we conclude that TAT-modified and unmodified lipoplexes are mainly internalized via a cholesterol-dependent clathrin-mediated pathway.  相似文献   

11.
Several reports have shown a fast and efficient translocation of TAT-modified lipoplexes and particles into the cell cytoplasm. However, neither the uptake mechanism nor the biological effect of TAT-modified lipoplexes has been studied in detail. In this report we show that the increase in gene transfer of TAT-modified lipoplexes depends on the amount of cationic lipid in the lipoplexes and on the way TAT was coupled to the lipoplexes. We demonstrate that the cellular uptake of both TAT-modified and unmodified lipoplexes is very fast and, in contrast to previous publications, temperature-dependent. Additionally, after internalization TAT-modified as well as unmodified lipoplexes end up in lysosomal vesicles, indicating the involvement of clathrin-mediated endocytosis. Furthermore, chlorpromazine, a specific inhibitor of clathrin-dependent endocytosis, strongly inhibits the cellular uptake and biological activity of both the TAT-modified and unmodified lipoplexes. We also found that the uptake and biological activity of these lipoplexes are diminished when cholesterol in the cell membrane was bound by filipin, an inhibitor of the lipid-raft mediated pathway. Considering these data, we conclude that TAT-modified and unmodified lipoplexes are mainly internalized via a cholesterol-dependent clathrin-mediated pathway.  相似文献   

12.
Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, hormonal signaling and communication with the environment including nutrient delivery, toxin avoidance, and pathogen defense. The major endocytic mechanism in plants depends on the coat protein clathrin. It starts by clathrin-coated vesicle formation at the plasma membrane, where specific cargoes are recognized and packaged for internalization. Recently, genetic, biochemical and advanced microscopy studies provided initial insights into mechanisms and roles of clathrin-mediated endocytosis in plants. Here we summarize the present state of knowledge and compare mechanisms of clathrin-mediated endocytosis in plants with animal and yeast paradigms as well as review plant-specific regulations and roles of this process.  相似文献   

13.
A self-assembled nanoparticulate system composed of a folate-conjugated heparin-poly(β-benzyl-l-aspartate) (HP) amphiphilic copolymer was proposed for targeted delivery of the antineoplastic drug paclitaxel (PTX). PTX was incorporated into three types of heparin-based nanoparticles, including HP, folate-conjugated HP (FHP), and folate-polyethylene glycol (PEG)-conjugated HP (FPHP), using a simple dialysis method. The PTX-loaded nanoparticles were then characterized according to particle size (140-190 nm) and size distribution, drug-loading content and efficiency, and in vitro release behavior. In the cellular uptake study using KB cells positive for the folate-receptor (FR), FHP and FPHP nanoparticles showed a much higher cellular uptake than did unconjugated HP nanoparticles. Specifically, when the PEG spacer was inserted between the folate ligand and heparin backbone, FPHP nanoparticles had a greater cellular uptake than did FHP nanoparticles. The in vitro cytotoxicity of PTX-loaded HP, FHP, and FPHP nanoparticles was studied in KB cells and FR-negative A549 cells. Compared with the cytotoxicity in A549 cells, PTX-loaded FHP and FPHP nanoparticles exhibited more potent cytotoxicity in KB cells than did PTX-loaded HP nanoparticles and free-PTX, suggesting that the presence of folate enhanced intracellular uptake via FR-mediated endocytosis. In addition, FPHP nanoparticles exhibited much greater cytotoxicity in KB cells than did FHP nanoparticles. These results suggest that PTX-loaded folate-conjugated HP nanoparticles are a potentially useful delivery system for cancer cells positive for the folate-receptor.  相似文献   

14.
Adenovirus Internalization and Infection Require Dynamin   总被引:14,自引:9,他引:5       下载免费PDF全文
The cell receptors that facilitate adenovirus internalization into cells have been identified; however, the infectious pathway of virus entry has not been established. Adenovirus entry and infection were examined in HeLa cells lacking or overexpressing mutant dynamin, a protein that specifically regulates clathrin-mediated endocytosis. Expression of mutant dynamin significantly reduced adenovirus internalization and gene delivery, indicating a functional requirement for this molecule. These findings are consistent with virus entry via the clathrin-coated pit pathway.  相似文献   

15.
Phospholipid and non-phospholipid vesicles are extensively studied as drug delivery systems to modify pharmacokinetics of drugs and to improve their action in target cells. It is believed that the major barrier to efficient drug delivery is entrapment of drugs in the endosomal compartment, since this eventually leads to its degradation in lysosomes. For these reasons, the knowledge of internalization pathway plays a fundamental role in optimizing drug targeting. The aim of this work is to characterize pH-sensitive Tween 20 vesicles, their interaction with macrophage-like cells and their comparison with pH-sensitive liposomes. The effect of different amounts of cholesteryl hemissucinate on surfactant vesicle formation and pH-sensitivity was studied. To evaluate the initial mode of internalization in Raw 264.7 and the intracellular fate of neutral and pH-sensitive formulations, flow cytometry in presence and in absence of selected inhibitors and fluorescence microscopy in absence and presence of specific fluorescent endocytotic markers were used. The obtained results showed that the surfactant vesicle pH-sensitivity was about two or three fold higher than that obtained with pH-sensitive liposomes in the presence of serum in vitro. The uptake mechanism of surfactant vesicles, after incubation with macrophage-like cells, is comparable to that of liposomes (clathrin-mediated endocytosis).  相似文献   

16.
The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.  相似文献   

17.
Efficient entry of synthetic polymers inside cells is a central issue in polymeric drug delivery. Though polymers are widely believed to interact nonspecifically with plasma membrane, we present unexpected evidence that amphiphilic block copolymers, depending on their aggregation state, can distinguish between caveolae- and clathrin-mediated endocytosis. A block copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), Pluronic P85 (P85), below critical micelle concentration (CMC) exists as single molecule coils (unimers) and above CMC forms 14.6 nm aggregated micelles with a hydrophobic PPO core and hydrophilic PEO shell. The internalization pathways of P85 in mammalian cells were elucidated using endocytosis inhibitors and colocalization with endocytosis markers (clathrin-specific antibodies and transferrin for clathrin and caveolin-1-specific antibodies and cholera toxin B for caveolae). Altogether, our results indicate that P85 unimers internalize through caveolae-mediated endocytosis, while P85 micelles internalize through clathrin-mediated endocytosis. Furthermore, at concentrations above 0.01% P85 inhibits caveolae-mediated endocytosis (cholera toxin B), while having little or no effect on the clathrin-mediated endocytosis (transferrin). Selective interaction of Pluronic with caveolae may explain its striking pharmacological activities including inhibition of drug efflux transport, activation of gene expression, and dose-dependent hyperlipidemia.  相似文献   

18.
Currently, there is high interest in developing multifunctional theranostic platforms for cancer monitoring and chemotherapy. Herein, we report hyaluronan (HA)-coated superparamagnetic iron oxide nanoparticles (HA-SPION) as a promising system for targeted imaging and drug delivery. When incubated with cancer cells, HA-SPIONs were rapidly taken up and the internalization of HA-SPION by cancer cells was much higher than the NPs without HA coating. The high magnetic relaxivity of HA-SPION coupled with enhanced uptake enabled magnetic resonance imaging of cancer cells. Furthermore, doxorubicin (DOX) was attached onto the nanoparticles through an acid responsive linker. While HA-SPION was not toxic to cells, DOX-HA-SPION was much more potent than free DOX to kill not only drug-sensitive but also multi-drug-resistant cancer cells. This was attributed to differential uptake mechanisms and cellular distributions of free DOX and DOX-HA-SPION in cancer cells.  相似文献   

19.
20.
While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS) are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral neuropathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号