首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable nitroxide radicals have been considered as therapeutic antioxidants because they can scavenge more toxic radicals in biologic systems. However, as radicals they also have the potential to increase oxidant stress in cells and tissues. We studied the extent to which this occurs in cultured EA.hy926 endothelial cells exposed to the nitroxide Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl). Tempol was rapidly reduced by the cells, as manifest by an increase in the ability of the cells to reduce extracellular ferricyanide and by disappearance of the Tempol EPR signal. Cells loaded with ascorbic acid, which directly reacts with Tempol, showed increased rates of Tempol-dependent ferricyanide reduction, and a more rapid loss of the Tempol EPR signal than cells not containing ascorbate. In this process, intracellular ascorbate was oxidized, and was depleted at lower Tempol concentrations than was GSH, another important intracellular low molecular weight antioxidant. Further evidence that Tempol concentrations of 100-1000 μM induced an oxidant stress was that it caused an increase in the oxidation of dihydrofluorescein in cells and inhibited ascorbate transport at concentrations as low as 50-100 μM. The presence of intracellular ascorbate both prevented dihydrofluorescein oxidation and spared GSH from oxidation by Tempol. Such sparing was not observed when GSH was depleted by other mechanisms, indicating that it was likely due to protection against oxidant stress. These results show that whereas Tempol may scavenge other more toxic radicals, care must be taken to ensure that it does not itself induce an oxidant stress, especially with regard to depletion of ascorbic acid.  相似文献   

2.
The inactivation of lysozyme caused by the radicals produced by thermolysis of 2, 2-azo-bis-2-amidino-propane can be prevented by the addition of different compounds that can react with the damaging free radicals. Compounds of high reactivity (propyl gallate, Trolox, cysteine, albumin, ascorbate, and NADH) afford almost total protection until their consumption, resulting in well-defined induction times. The number of radicals trapped by each additive molecule consumed ranges from 3 (propyl gallate) to 0.12 (cysteine). This last value is indicative of chain oxidation of the inhibitor. Uric acid is able to trap nearly 2.2 radicals per added molecule, but even at large (200 μM) concentrations, a residual inactivation of the enzyme is observed, which may be caused by urate-derived radicals.

Compounds of lower reactivity (tryptophan, Tempol, hydroquinone, desferrioxamine, diethylhydroxylamine, methionine, histidine, NAD+ and tyrosine) only partially decrease the lysozyme inactivation rates. For these compounds, we calculated the concentration necessary to reduce the enzyme inactivation rate to one half of that observed in the absence of additives. These concentrations range from 9 μM (tryptophan and Tempol) to 5 mM (NAD+).  相似文献   

3.
In the absence of redox-active transition metal ions, the removal of Tempol by Trolox occurs by a simple bimolecular reaction that, most probably, involves a hydrogen transfer from phenol to nitroxide. The specific rate constant of the process is small (0.1 M &#109 1 s &#109 1 ). Metals can catalyze the process, as evidenced by the decrease in rate observed in the presence of diethylenetriaminepentaacetic acid (DTPA). Furthermore, addition of Fe(II) (20 &#119 M ferrous sulfate and 40 &#119 M EDTA) produces a noticeable increase in the rate of Tempol consumption.  相似文献   

4.
Objective: We analyse the effect of aldosterone on vasomotor response induced by electrical field stimulation (EFS) in mesenteric arteries from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Results: Aldosterone (0.001–1 μM) reduced vasoconstrictor response to EFS in a dose- and time-dependent manner only in SHR. Thus, the rest of experiments were performed only in SHR. Aldosterone did not affect either noradrenaline response or release. Effect of aldosterone (1 μM) on EFS response was not affected by NG-nitro-arginine-methyl esther (100 μM), and was abolished by capsaicin (0.5 μM) and the calcitonin gene-related peptide antagonist (CGRP 8–37, 0.5 μM). Calcitonin gene-related peptide (0.1 nM–0.1 μM) induced a concentration-dependent relaxation, which was enhanced by aldosterone (1 μM). Incubation with either spironolactone (1 μM), glibenclamide (10 μM), RU 486 10 μM, ODQ (10 μM) or cycloheximide (10 μM) significantly reduced the enhancement of CGRP-relaxation produced by aldosterone, while remained unmodified by SQ 22,536. Conclusions: Aldosterone decreases the vasoconstrictor response to EFS in mesenteric arteries from SHR but not from WKY. This effect is mediated by an increased response to the sensory neurotransmitter CGRP, substantially, through glucocorticoid receptors activation. Furthermore, this effect is mediated by an increase of cGMP synthesis and ATP-dependent potassium channel activation.  相似文献   

5.
Previous research has shown that lactate dehydrogenase (LDH) was competitively inhibited by pentachlorophenol (PCP) and a modified assay produced a detection limit of 1 μM (270 μg l−1). This work used spectrophotometric rate-determination but in order to move towards biosensor development the selected detection method was electrochemical. The linkage of LDH to lactate oxidase (LOD) provided the electroactive species, hydrogen peroxide. This could be monitored using a screen-printed carbon electrode (SPCE) incorporating the mediator, cobalt phthalocyanine, at a potential of +300 mV (vs. Ag/AgCl). A linked LDH/LOD system was optimised with respect to inhibition by PCP. It was found that the SPCE support material, PVC, acted to reduce inhibition, possibly by combining with PCP. A cellulose acetate membrane removed this effect. Inhibition of the system was greatest at enzyme activities of 5 U ml−1 LDH and 0.8 U ml−1 LOD in reactions containing 246 μM pyruvate and 7.5 μM NADPH. PCP detection limits were an EC10 of 800 nM (213 μg l−1) and a minimum inhibition detectable (MID) limit of 650 nM (173 μg l−1). The inclusion of a third enzyme, glucose dehydrogenase (GDH), provided cofactor recycling to enable low concentrations of NADPH to be incorporated within the assay. NADPH was reduced from 7.5 to 2 μM. PCP detection limits were obtained for an assay containing 5 U ml−1 LDH, 0.8 U ml−1 LOD and 0.1 U ml−1 GDH with 246 μM pyruvate, 400 mM glucose and 2 μM NADPH. The EC10 limit was 150 nM (39.9 μg l−1) and the MID was 100 nM (26.6 μg l−1). The design of the inhibition assays discussed has significance as a model for other enzymes and moves forward the possibility of an electrochemical biosensor array for pollution monitoring.  相似文献   

6.
A series of 3-(2-methoxytetrahydrofuran-2-yl)pyrazoles (4–10) was synthesized. The compounds were evaluated for their ability to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity in human whole blood (HWB). The compound, 5-(4-methanesulfonylphenyl)-3-(2-methoxytetrahydrofuran-2-yl)-1-p-tolyl-1H-pyrazole 5 showed potent and selective COX-2 inhibition (IC50 for COX-1: >100 μM and COX-2: 1.2 μM).  相似文献   

7.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

8.
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca2+ indicator. Clomiphene at concentrations between 10-50 μM increased [Ca2+]i in a concentration-dependent manner. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by 41%. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with clomiphene in Ca2+-free medium, confirming that clomiphene induced Ca2+ entry. In Ca2+-free medium, pretreatment with 50 μM brefeldin A (to permeabilize the Golgi complex), 1 μM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and 2 μM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 μM clomiphene-induced store Ca2+ release. Conversely, pretreatment with 50 μM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 μM clomiphene-induced Ca2+release was unaltered by inhibiting phospholipase C with 2 μM 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 μM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca2+]i increases in PC3 cells by releasing store Ca2+ from multiple stores in an phospholipase C-independent manner, and by activating Ca2+ influx; and clomiphene was of mild cytotoxicity.  相似文献   

9.
Fatty acid hydroperoxides in the plasma of 18 patients who were undergoing normal postoperative periods following major thoracic or abdominal operations were measured by using a sensitive assay based upon the activation of the cyclooxygenase activity of prostaglandin H synthase. Following major thoracic operations of nine patients, the mean difference between the arterial (0.49 ± 0.13 μM, mean ± S.E.M.) and mixed venous (−0.09 ± 0.12 μM) level of hydroperoxide was 0.58 ± 0.13 μM (p < 0.01). In marked contrast to this result, major abdominal operations of nine patients led to a mean difference between the arterial (−0.19 ± 0.16 μM) and mixed venous (0.46 ± 0.08 μM) hydroperoxide levels of −0.65 ± 0.17 μM (p < 0.01). Both pulmonary and intraabdominal tissues appear capable of generating significant amounts of fatty acid hydroperoxide in response to standard surgical procedures. The A-MV differences suggest that the blood-borne hydroperoxides were rapidly cleared from the circulation by tissue capillary beds.  相似文献   

10.
Neurosteroids are modulators of several receptors and ion channels and are implicated in the pathophysiology of several neuropsychiatric diseases including hepatic encephalopathy (HE). The neurosteroid, allopregnanolone, a positive allosteric modulator of GABAA receptors, accumulates in the brains of HE patients where it can potentiate GABAA receptor-mediated responses. Attenuation of the effects of neurosteroids on GABA-ergic neurotransmission is therefore of interest for the management of HE. In the present study, we determined the effect of the benzodiazepine partial inverse agonist, Ro15-4513, and the benzodiazepine antagonist, flumazenil on modulation of the GABAA mediated chloride currents by allopregnanolone and on spontaneous synaptic activity in cultured hippocampal neurons using the patch-clamp technique. Allopregnanolone (0.03–0.3 μM), dose-dependently potentiated GABA-induced currents, an action significantly reduced by Ro15-4513 (10 μM). In contrast, flumazenil (10 μM) had no effect on the ability of allopregnanolone to potentiate GABAA currents but it blocked the effects of Ro15-4513. The frequency of spontaneous synaptic activity was significantly reduced in the presence of allopregnanolone (0.1 μM) from 1.5 ± 0.7 to 0.1 ± 0.04 Hz. This action was partially reversed by Ro15-4513 (10 μM) but was not significantly influenced by flumazenil (10 μM). These findings suggest that the beneficial affects of Ro15-4513 in experimental HE result from attenuation of the effects of neurosteroids at GABAA receptors. Our results may provide a rational basis for the use of benzodiazepine inverse agonists in the management and treatment of hepatic encephalopathy in patients with liver failure.  相似文献   

11.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.  相似文献   

12.
In the present in vitro and in vivo study we investigated the pro-oxidant effects of hemoglobin, as well as the antioxidant effects of its metabolites, in the brain. Incubation of rat brain homogenates with hemoglobin (0-10 μM) but not hemin induced lipid peroxidation up to 24 h (EC50 = 1.2 μM). Hemoglobin's effects were similar to ferrous ion (EC50 = 1.7 μM) and were blocked by the chelating agent deferoxamine (IC50 = 0.5 μM) and a nitric oxide-releasing compound S-nitrosoglutathione (IC50 = 40 μM). However, metabolites of hemoglobin — biliverdin and bilirubin — inhibited brain lipid peroxidation induced by cell disruption and hemoglobin (biliverdin IC50 = 12-30 and bilirubin IC50 = 75-170 μM). Biliverdin's antioxidative effects in spontaneous and iron-evoked lipid peroxidation were further augmented by maganese (2 μM) since manganese is an antioxidative transition metal and conjugates with bile pigments. Intrastriatal infusion of hemoglobin (0-24 nmol) produced slight, but significant 20-22% decreases in striatal dopamine levels. Whereas, intrastriatal infusion of ferrous citrate (0-24 nmol) dose-dependently induced a greater 66% depletion of striatal dopamine which was preceded by an acute increase of lipid peroxidation. In conclusion, contrary to the in vitro results hemoglobin is far less neurotoxic than ferrous ions in the brain. It is speculated that hemoglobin may be partially detoxified by heme oxygenase and biliverdin reductase to its antioxidative metabolites in the brain. However, in head trauma and stroke, massive bleeding could significantly produce iron-mediated oxidative stress and neurodegeneration which could be minimized by endogenous antioxidants such as biliverdin, bilirubin, manganese and S-nitrosoglutathione.  相似文献   

13.
1. The effect of low oxygen concentration on the oxidation-reduction states of cytochrome c and of pyridine nucleotide, on Ca2+ uptake, on the energy-linked reduction of pyridine nucleotide by succinate, and on the rate of oxygen consumption have been examined under various metabolic conditions, using pigeon heart mitochondria.

2. The oxygen concentration required to provide half-maximal reduction of cytochrome c (p50c) ranges from 0.27 to 0.03 μM (0.2-0.02 Torr) depending upon the metabolic activity. There is a linear increase of the p50c value with increasing respiratory rate.

3. The fraction of the normoxic respiration that is observed at p50c is 70–90% under State 4 conditions, but is 30% under State 3 conditions.

4. The oxygen requirement for half-maximal reduction of pyridine nucleotide (p50PN) varies less than p50c, being 0.08 μM in State 3 and 0.06 μM in the uncoupled state.

5. The ability of the mitochondria to exhibit an energy-linked reduction of pyridine nucleotide by succinate disappears at an oxygen concentration of 0.09 μM (0.06 Torr). Below this oxygen concentration, endogenous Ca2+ begins to be released from the mitochondria. Thus, the critical oxygen concentration for bioenergetic function of mitochondria corresponds approximately to 50% reduction of pyridine nucleotide (p50PN).  相似文献   


14.
Inositol phosphate glycan pseudotetrasaccharides consisting of man-(1-6)-man-(1-4)-glcN-(,β1-6)-myo-inositol-1,2-cyclic phosphate possessing a sulfate group at either O-6 (compounds 3,β) or O-2 (compounds 4,β) of the terminal mannose have been prepared. Compound 4 was able to stimulate lipogenesis in native rat adipocytes to 78% of the maximal insulin response (MIR) with an EC50 of 1.1 μM. The other compounds exhibited lower maximal stimulations (47–63% MIR) and higher EC50 values (9.5–10.6 μM).  相似文献   

15.
Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 μM) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV (1–10 μM) enhanced capsaicin-evoked substance P release about 100%. This facilitatory effect was blocked by 0.3 μM MK-801, a selective NMDA receptor antagonist. The metabotropic glutamate receptor agonists L-AP4 (group III) and DHPG (group I) (30–100 μM) inhibited capsaicin-evoked substance P release by approximately 60%. These inhibitory effects were blocked by the selective metabotropic glutamate receptor antagonist (±)-MCPG (5 μM). On the other hand, AMPA and kainate (0.1–10 μM), did not significantly affect capsaicin-evoked substance P release. Thus, substance P release from non-myelinated primary afferents, and possibly nociception, may be under the functional antagonistic control of some metabotropic and ionotropic glutamate receptor subtypes.  相似文献   

16.
Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 μM), 3-methylcholanthrene (3MC, 0.1-10 μM) and β-naphthoflavone (βNF, 1-50 μM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and βNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway.  相似文献   

17.
Prostaglandin (PG) and thromboxane B2 (TXB2) biosynthesis was studied in cultured astrocytes from neonatal rat brain hemispheres. After two weeks of cultivation, prostanoids were formed with the spectrum: PGD2 > TXB2 > PGF2 > PGE2, as measured by specific radioimmunoassays. Under basal conditions PGD2 biosynthesis (9.55 ng/mg protein/15 min) was in the same order of magnitude as the sum of the other prostanoids. The formation of prostanoids was stimulated in a concentration dependent manner (up to 6–10 fold) by the calcium ionophore A 23187 (0.01–10 μM) as well as by melittin (0.01–5 μg/ml), phospholipase A2 (10–40 U/ml) and phospholipase C (0.01–1 U/ml). Basal and evoked PG and TXB2 biosynthesis depended on the availability of Ca2+, as demonstrated in Ca2+ free incubation medium containing Na2EDTA (1 μM), or with verapamil (100 μM) and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)-octylester-HCl (TMB-8, 1–100 μM). Indomethacin (10 μM), mepacrine (100 μM) and p-bromophenacylbromide (50 μ M) inhibited basal and evoked PG formation. Thin-layer chromatography (TLC) detection after incubation of the cells with [3H]arachidonic acid (1 μCi/ml, for 60 min) confirmed the results obtained by radioimmunoassay. Incubation of [3H]arachidonic acid labelled cells with inonophore or phospholipases, followed by lipid extraction and TLC, showed that A 23187 liberated [3H]arachidonic acid predominantly from phosphatidylethanolamine, whereas phospholipase A2 and C reduced mainly the labelling of the phosphatidyl-inositol/-choline fraction. Potassium depolarization of the cells did not enhance prostanoid formation. Similarly, drugs with affinity to - or β-adrenoceptors, or to dopamine-, 5-hydroxytryptamine-, muscarine-, histamine-, glutamate-, aspartate-, GABA, adenosine- and opioid-receptors failed to stimulate prostanoid biosynthesis. Also compounds like angiotensin, bradykinin and thrombin were ineffective in this respect.

In conclusion, our results confirm that cultured astrocytes possess the complete pattern of enzymes necessary for prostanoid formation and hence might play a crucial role in brain prostanoid biosynthesis. Stimulation of prostanoid biosynthesis involves Ca2+-dependent activation of phospholipase A2, cyclooxygenase reaction and further PG metabolism. However, the endogenous stimulus for enhanced prostanoid synthesis in the brain still has to be established.  相似文献   


18.
The Caco-2 cell model was used to study the efficiency of absorption and endogenous excretion of zinc (Zn) regulated by dietary Zn concentration. Cells were seeded onto high pore-density membranes and maintained in medium supplemented with 10% FBS. After confluence, cells were treated with 5 or 25 μmol Zn/L for 7 d, and Zn uptake and transport were measured in both apical (AP) and basolateral (BL) directions by using 65Zn. Similar cells were labeled with 65Zn and the release of Zn to the AP and BL sides was measured. The AP uptake of Zn in cells exposed to 25 μmol Zn/L was slower (p < 0.05) than that in cells exposed to 5 μmol Zn/L. The AP to BL transport rate in the 25 μmol Zn/L group was only 40% (p < 0.05) of that in the 5 μM group. In contrast, the rate of BL Zn uptake was 4-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). The BL to AP transport rate was 2-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Basolateral uptake was 6 to 25 times greater (p < 0.05) than AP uptake for cells treated with 5 and 25 μmol Zn/L, respectively. The rate of Zn release was enhanced about 4-fold (p < 0.05) by 25 μmol Zn/L treatment. Release to the BL side was 10 times greater than to the AP side. Zn-induced metallothionein (MT), thought to down-regulate AP to BL Zn transport, was 4-fold higher (p < 0.001) in the 25 μmol Zn/L group than in the 5 μM group, but the rate of BL Zn release was higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Induced changes in transport rates by media Zn concentrations could involve the up- and/or down-regulation of Zn influx and efflux proteins such as the ZIP and ZnT families of Zn transporters.  相似文献   

19.
The cyanidin-3- O - β-glucopyranoside (C-3-G) antioxidant capacity towards reactive oxygen species (ROS)-mediated damages was assessed in tissue and cells submitted to increased oxidative stress. In the isolated ischemic and reperfused rat heart, 10 or 30 μM C-3-G protected from both lipid peroxidation (66.7 and 94% inhibition of malondialdehyde (MDA) generation in 10 and 30 μM C-3-G-reperfused hearts, respectively, in comparison with control reperfused hearts) and energy metabolism impairment (higher ATP concentration in 10 and 30 μM C-3-G-reperfused hearts than in control reperfused hearts). These effects were associated to C-3-G permeation within myocardial cells, as indicated by results obtained in the isolated rat heart perfused for 30 min in the recirculating Langendorff mode under normoxia with 10 and 30 μM C-3-G. Protective effects were exerted, in a dose-dependent manner, by C-3-G also in 2 mM hydrogen peroxide-treated human erythrocytes. With respect to MDA formation, an apparent IC 50 of 5.12 μM was calculated for C-3-G (the polyphenol resveratrol used for comparison showed an apparent IC 50 of 38.43 μM). The general indications are that C-3-G (largely diffused in dietary plants and fruits, such as pigmented oranges very common in the Mediterranean diet) represents a powerful natural antioxidant with beneficial effects in case of increased oxidative stress, and at pharmacological concentrations it is able to decrease tissue damages occurring in myocardial ischemia and reperfusion.  相似文献   

20.
A series of aliphatic and aromatic trifluoromethyl ketones has been tested as inhibitors of the antennal esterases of the Egyptian armyworm Spodoptera littoralis, by evaluation of the extent of hydrolysis of [1-3H]-(Z,E)-9, 11-tetradecadienyl acetate (1), a tritiated analog of the major component of the sex pheromone. The most active compounds with a long chain aliphatic structure were 3-octylthio-1,1,1-trifluoropropan-2-one (2) (IC50 0.55 μM) and 1,1,1-trifluorotetradecan-2-one (4) (IC50 1.16 μM). The aromatic compounds were generally less potent inhbitors than the coressponding aromatic ones, although β-naphthyltrifuloromethyl ketone (10) exhibited a remarkable inhibitory activity (IC50 7.9 μM). Compounds 2, 4 and 10 exhibit a competitive inhibition with Ki values of 2.51×10−5 M, 2.98×10−5 M and 2.49×10−4 M, respectively. Some of the trifluoromethyl ketones tested were slow-binding inhibitors and compounds 2 and 10 are described as inhibitors of the antennal esterases of a moth for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号