首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Random arrangement of nucleosome on DNA in chromatin   总被引:1,自引:0,他引:1  
A Prunell 《FEBS letters》1979,107(2):285-287
  相似文献   

2.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

3.
In this study 1H NMR has been used to investigate the conformational state of DNA in nucleosome core particles. The nucleosome core particles exhibit partially resolved low field (10-15 ppm) spectra due to imino protons in Watson-Crick base pairs (one resonance per GC or AT base pair). To a first approximation, the spectrum is virtually identical with that of protein-free 140 base pair DNA, and from this observation we draw two important conclusions: (i) Since the low field spectra of DNA are known to be sensitive to conformation, the conformation of DNA in the core particles is essentially the same as that of free DNA (presumably B-form), (ii) since kinks occurring at a frequency at 1 in 10 or 1 in 20 base pairs would result in a core particle spectrum different from that of free DNA we find no NMR evidence supporting either the Crick-Klug or the Sobell models for kinking DNA around the core histones. Linewidth considerations indicate that the rotational correlation time for the core particles is approximately 1.5 X 10(-7) sec, whereas the end-over-end tumbling time of the free 140 base pair DNA is 3 X 10(-7) sec.  相似文献   

4.
Sequence periodicities in chicken nucleosome core DNA   总被引:79,自引:0,他引:79  
The rotational positioning of DNA about the histone octamer appears to be determined by certain sequence-dependent modulations of DNA structure. To establish the detailed nature of these interactions, we have analysed the sequences of 177 different DNA molecules from chicken erythrocyte core particles. All variations in the sequence content of these molecules, which may be attributed to sequence-dependent preferences for DNA bending, correlate well with the detailed path of the DNA as it wraps around the histone octamer in the crystal structure of the nucleosome core. The sequence-dependent preferences that correlate most closely with the rotational orientation of the DNA, relative to the surface of the protein, are of two kinds: ApApA/TpTpT and ApApT/ApTpT, the minor grooves of which face predominantly in towards the protein; and also GpGpC/GpCpC and ApGpC/GpCpT, whose minor grooves face outward. Fourier analysis has been used to obtain fractional variations in occurrence for all ten dinucleotide and all 32 trinucleotide arrangements. These sequence preferences should apply generally to many other cases of protein-DNA recognition, where the DNA wraps around a protein. In addition, it is observed that long runs of homopolymer (dA) X (dT) prefer to occupy the ends of core DNA, five to six turns away from the dyad. These same sequences are apparently excluded from the near-centre of core DNA, two to three turns from the dyad. Hence, the translational positioning of any single histone octamer along a DNA molecule of defined sequence may be strongly influenced by the placement of (dA) X (dT) sequences. It may also be influenced by any aversion of the protein for sequences in the "linker" region, the sequence content of which remains to be determined.  相似文献   

5.
The effects of sodium chloride concentration on the structure of chicken erythrocyte nucleosome core particles have been studied by the use of fluorescently labelled histones. Histone H3 was modified with two sulfhydryl-specific dyes and reconstituted into core nucleosomes. Between 10?4 m and 0.6 M-NaCl four different states were observed by the fluorescent techniques of collisional quenching, polarization and energy transfer. Below 5 × 10?4 m-NaCl the nucleosome is flexible, with the single cysteine residues of the two H3 species about 48 Å apart and somewhat exposed. Between 5 × 10?3 m and 10?1 m-NaCl the nucleosome is rigid and non-spherical. The cysteine residues are close together and buried. Between 10?1 m and 4 × 10?1 m-NaCl, the cysteines become slightly more exposed but remain close together. At 6 × 10?1 m-NaCl the nucleosome is very flexible. The cysteines are more than 70 Å apart and are quite exposed. The dramatic structural changes that are observed in core nucleosomes are consistent with the variety of functions in which they must participate in the cell.  相似文献   

6.
Liu H  Wu J  Xie J  Yang X  Lu Z  Sun X 《Biophysical journal》2008,94(12):4597-4604
By analyzing dinucleotide position-frequency data of yeast nucleosome-bound DNA sequences, dinucleotide periodicities of core DNA sequences were investigated. Within frequency domains, weakly bound dinucleotides (AA, AT, and the combinations AA-TT-TA and AA-TT-TA-AT) present doublet peaks in a periodicity range of 10-11 bp, and strongly bound dinucleotides present a single peak. A time-frequency analysis, based on wavelet transformation, indicated that weakly bound dinucleotides of core DNA sequences were spaced smaller (∼10.3 bp) at the two ends, with larger (∼11.1 bp) spacing in the middle section. The finding was supported by DNA curvature and was prevalent in all core DNA sequences. Therefore, three approaches were developed to predict nucleosome positions. After analyzing a 2200-bp DNA sequence, results indicated that the predictions were feasible; areas near protein-DNA binding sites resulted in periodicity profiles with irregular signals. The effects of five dinucleotide patterns were evaluated, indicating that the AA-TT pattern exhibited better performance. A chromosome-scale prediction demonstrated that periodicity profiles perform better than previously described, with up to 59% accuracy. Based on predictions, nucleosome distributions near the beginning and end of open reading frames were analyzed. Results indicated that the majority of open reading frames’ start and end sites were occupied by nucleosomes.  相似文献   

7.
The enzyme responsible for maintenance methylation of CpG dinucleotides in vertebrates is DNMT1. The presence of DNMT1 in DNA replication foci raises the issue of whether this enzyme needs to gain access to nascent DNA before its packaging into nucleosomes, which occurs very rapidly behind the replication fork. Using nucleosomes positioned along the 5 S rRNA gene, we find that DNMT1 is able to methylate a number of CpG sites even when the DNA major groove is oriented toward the histone surface. However, we also find that the ability of DNMT1 to methylate nucleosomal sites is highly dependent on the nature of the DNA substrate. Although nucleosomes containing the Air promoter are refractory to methylation irrespective of target cytosine location, nucleosomes reconstituted onto the H19 imprinting control region are more accessible. These results argue that although DNMT1 is intrinsically capable of methylating some DNA sequences even after their packaging into nucleosomes, this is not the case for at least a fraction of DNA sequences whose function is regulated by DNA methylation.  相似文献   

8.
9.
We studied the diffusion of native and trypsinized nucleosome core particles (NCPs), in aqueous solution and in concentrated DNA solutions (0.25-100 mg/ml) using fluorescence correlation spectroscopy (FCS). The highest DNA concentrations studied mimic the DNA density inside the cell nucleus. The diffusion coefficient of freely diffusing NCPs depends on the presence or absence of histone tails and is affected by the salt concentration due to the relaxation effect of counterions. NCPs placed in a network of long DNA molecules (30-50 kbp) reveal anomalous diffusion. We demonstrate that NCPs diffusion is in agreement with known particle transport in entangled macromolecular solutions as long as the histone tails are folded onto the particles. In contrast, when these tails are unfolded, the reversible adsorption of NCPs onto the DNA network has to be taken into account. This is confirmed by the fact that removal of the tails leads to reduction of the interaction between NCPs and the DNA network. The findings suggest that histone tail bridging plays an important role in chromatin dynamics.  相似文献   

10.
31P Nmr parameters (δ, T1, W1/2, and NOE) were measured for the DNA in nucleosome core particles at three frequencies and compared with similar data for the histone-free DNA. An essentially linear relationship was found between the frequency of observation and line-width for the single broad envelope of 31P resonances of the DNA in the nucleosome cores. We attributed this largely to chemical shift dispersion, with smaller contributions from chemical shift anisotropy and dipolar broadening. These results suggest the presence of different environments for phosphorus atoms in the core particles. However, within the accuracy of the method, no asymmetry in the resonance could be detected, which would tend to rule out any significant degree of DNA “kinking.” To investigate the interactions of the DNA and histones within the core particles we also studied transitions induced by urea and by temperature. Urea caused two stepwise increases in linewidth, which we attributed to conformational changes. A biphasic transition was also observed in the temperature profile, consistent with previous optical studies [Weischet et. al. (1978) Nucleic Acids Res. 5 , 139]. Various models with different types of local mobility were examined by the relaxation theory. A model of isotropic motion having a broad distribution of correlation times gave a fairly good fit to the 31P-nmr data.  相似文献   

11.
Although the crystal structure of nucleosome core particle is essentially symmetrical in the vicinity of the dyad, the linker histone binds asymmetrically in this region to select a single high-affinity site from potentially two equivalent sites. To try to resolve this apparent paradox we mapped to base-pair resolution the dyads and rotational settings of nucleosome core particles reassembled on synthetic tandemly repeating 20 bp DNA sequences. In agreement with previous observations, we observed (1) that the helical repeat on each side of the dyad cluster is 10 bp maintaining register with the sequence repeat and (2) that this register changes by 2 bp in the vicinity of the dyad. The additional 2 bp required to effect the change in the rotational settings is accommodated by an adjustment immediately adjacent to the dyad. At the dyad the hydroxyl radical cleavage is asymmetric and we suggest that the inferred structural asymmetry could direct the binding of the linker histone to a single preferred site.  相似文献   

12.
Salt-induced release of DNA from nucleosome core particles   总被引:8,自引:0,他引:8  
  相似文献   

13.
14.
DNA stretching in chromatin may facilitate its compaction and influence site recognition by nuclear factors. In vivo, stretching has been estimated to occur at the equivalent of one to two base-pairs (bp) per nucleosome. We have determined the crystal structure of a nucleosome core particle containing 145 bp of DNA (NCP145). Compared to the structure with 147 bp, the NCP145 displays two incidences of stretching one to two double-helical turns from the particle dyad axis. The stretching illustrates clearly a mechanism for shifting DNA position by displacement of a single base-pair while maintaining nearly identical histone-DNA interactions. Increased DNA twist localized to a short section between adjacent histone-DNA binding sites advances the rotational setting, while a translational component involves DNA kinking at a flanking region that initiates elongation by unstacking bases. Furthermore, one stretched region of the NCP145 displays an extraordinary 55° kink into the minor groove situated 1.5 double-helical turns from the particle dyad axis, a hot spot for gene insertion by HIV-integrase, which prefers highly distorted substrate. This suggests that nucleosome position and context within chromatin could promote extreme DNA kinking that may influence genomic processes.  相似文献   

15.
We have analyzed the conditions of aggregation or precipitation of DNA in four different states: double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), mononucleosome core particles (NCP), and H1-depleted chromatin fragments (ChF) in the presence of the multivalent cation spermine (4+). In an intermediate regime of DNA concentration, these conditions are identical for the four states. This result demonstrates that the mechanism involved is general from flexible chains to rigid rods and quasi-colloidal states. It is dominated by local electrostatic attractions that are considered, for instance, by the "ion-bridging" model. The onset of precipitation does not require the electroneutrality of the DNA chains. Above a given spermine concentration dsDNA aggregates remain neutral, whereas NCP aggregates turn positively charged. The difference is thought to originate from the extension of the positively charged proteic tails of the NCP. This suggests that local fluctuations of polyamine concentrations can induce either positively or negatively charged chromatin domains.  相似文献   

16.
The molecular details of how chromatin factors and enzymes interact with the nucleosome are critical to understanding fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty in producing diffraction-quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300-kDa RCC1 chromatin factor/nucleosome core particle complex that diffract to 2.9-Å resolution. These steps include both pre- and postcrystallization strategies potentially useful to other complexes. We screened multiple variant RCC1/nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths, as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1/nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of postcrystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0- to 2.9-Å resolution.  相似文献   

17.
The arrangement of nucleosomes on the nucleotide sequence of satellite DNA of Oceanian rat (Rattus rattus) has been studied. Nucleosome cores were prepared from rat liver nuclei with micrococcal nuclease, exonucleaseIII and nuclease Sl. From the total population of core DNA fragments, the satellite-containing fragments were selected by molecular cloning and the complete nucleotide sequence of these clones was determined. The data show that nucleosomes occupy a number of preferred positions on satellite DNA. These positions are strictly defined. Thus location of nucleosomes along the satellite sequence is non-random. Such finding may have important biological significance.  相似文献   

18.
An insoluble DNA polymerase activity that replicates the intact chromatin template at 85% of the rate found in vivo has been partially characterized. HeLa cells, encapsulated in agarose microbeads, are lysed using an isotonic salt concentration: the resulting encapsulated nuclei contain polymerase associated with a nucleoskeleton and the unbroken template. This preparation can be manipulated freely without aggregation or breaking the DNA and yet is accessible to enzymes and other probes. The major activity, which is sensitive to aphidicolin, is found only in S-phase nuclei and replicates DNA semi-conservatively, forming intermediates that are ligated efficiently into larger products.  相似文献   

19.
DNA motions in the nucleosome core particle: a reanalysis   总被引:3,自引:0,他引:3  
J M Schurr  R L Schurr 《Biopolymers》1985,24(10):1931-1940
  相似文献   

20.
The structural behavior of the nucleosome core particles in the range of solvent Na+ concentration from 10.45 to 0.45 mM has been studied by small-angle neutron and synchroton radiation X-ray scattering, sedimentation, atomic absorption spectroscopy, density measurements, and circular dichroism. With decreasing salt concentration, the appearance of a scattering peak that is assignable to interparticle interactions, an intraparticle structural transition, a decrease in the sedimentation velocity of the particle, and a release of bound Na+ ions from the particle are all observed concurrently when the ratio of solvent Na+ ions per particle is below approximately 1000. These observations are interpreted to indicate that a release of bound Na+ ions from the particle brings about structural rearrangements and weakens the electrostatic shielding of the particle, and this introduces long-range repulsive ordering of the particle in low-salt solution. Analyses of the scattering data indicate that the rearrangement within the core particle in low-salt solution is slight, changing the particle's shape slightly from cylindrical to a more spherical form by moving the center of the mass of the DNA somewhat inward with accompanying small decreases in the radii of gyration of both the DNA and the histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号