首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous work has shown that tobacco (Nicotiana tabacum) plants engineered to express spinach choline monooxygenase in the chloroplast accumulate very little glycine betaine (GlyBet) unless supplied with choline (Cho). We therefore used metabolic modeling in conjunction with [(14)C]Cho labeling experiments and in vivo (31)P NMR analyses to define the constraints on GlyBet synthesis, and hence the processes likely to require further engineering. The [(14)C]Cho doses used were large enough to markedly perturb Cho and phosphocholine pool sizes, which enabled development and testing of models with rates dynamically responsive to pool sizes, permitting estimation of the kinetic properties of Cho metabolism enzymes and transport systems in vivo. This revealed that import of Cho into the chloroplast is a major constraint on GlyBet synthesis, the import rate being approximately 100-fold lower than the rates of Cho phosphorylation and transport into the vacuole, with which import competes. Simulation studies suggested that, were the chloroplast transport limitation corrected, additional engineering interventions would still be needed to achieve levels of GlyBet as high as those in plants that accumulate GlyBet naturally. This study reveals the rigidity of the Cho metabolism network and illustrates how computer modeling can help guide rational metabolic engineering design.  相似文献   

3.
4.
BACKGROUND AND AIMS: Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS: Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS: Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS: In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.  相似文献   

5.
Zhang J  Tan W  Yang XH  Zhang HX 《Plant cell reports》2008,27(6):1113-1124
Glycine betaine (GlyBet), a quaternary ammonium compound, functions as an osmoprotectant in many organisms including plants. Previous research has shown that over-expression of enzymes for GlyBet biosynthesis in transgenic plants improved abiotic stress tolerance, but so far no study on the effects of plastid-expression of choline monooxygenase, the enzyme that catalyzes the conversion of choline into betaine aldehyde, has been reported. In the present study, tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants were transformed with a gene for choline monooxygenase (BvCMO) from beet (Beta vulgaris) via plastid genetic engineering. Transplastomic plants constitutively expressing BvCMO under the control of the ribosomal RNA operon promoter and a synthetic T7 gene G10 leader were able to accumulate GlyBet in leaves, roots and seeds, and exhibited improved tolerance to toxic level of choline and to salt/drought stress when compared to wild type plants. Transplastomic plants also demonstrated higher net photosynthetic rate and apparent quantum yield of photosynthesis in the presence of 150 mM NaCl. Salt stress caused no significant change on the maximal efficiency of PSII photochemistry (Fv/Fm) in both wild type and transplastomic plants, but a decrease in the actual efficiency of PSII (PhiPSII) was observed, and such a decrease was much greater in wild type plants. Our results demonstrate the feasibility of improving salt and drought tolerance in plants through plastid transformation with BvCMO gene.  相似文献   

6.
7.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   

8.
Cysteine (Cys) synthase [O-acetyl-L-Ser(thiol)-lyase, EC 4.2.99.8; CSase] is responsible for the final step in biosynthesis of Cys. Transgenic tobacco (Nicotiana tabacum; F(1)) plants with enhanced CSase activities in the cytosol and in the chloroplasts were generated by cross-fertilization of two transformants expressing cytosolic CSase or chloroplastic CSase. The F(1) transgenic plants were highly tolerant to toxic sulfur dioxide and sulfite. Upon fumigation with 0.1 microL L(-1) sulfur dioxide, the Cys and glutathione contents in leaves of F(1) plants were increased significantly, but not in leaves of non-transformed control plants. Furthermore, the leaves of F(1) plants exhibited the increased resistance to paraquat, a herbicide generating active oxygen species.  相似文献   

9.
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.  相似文献   

10.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants were transformed with a gene for choline oxidase (codA) from Arthrobacter globiformis. The gene product (CODA) was targeted to the chloroplasts (Chl-codA), cytosol (Cyt-codA) or both compartments simultaneously (ChlCyt-codA). These three transgenic plant types accumulated different amounts and proportions of glycinebetaine (GB) in their chloroplasts and cytosol. Targeting CODA to either the cytosol or both compartments simultaneously increased total GB content by five- to sixfold over that measured from the chloroplast targeted lines. Accumulation of GB in codA transgenic plants was tissue dependent, with the highest levels being recorded in reproductive organs. Despite accumulating, the lowest amounts of GB, Chl-codA plants exhibited equal or higher degrees of enhanced tolerance to various abiotic stresses. This suggests that chloroplastic GB is more effective than cytosolic GB in protecting plant cells against chilling, high salt and oxidative stresses. Chloroplastic GB levels were positively correlated with the degree of oxidative stress tolerance conferred, whereas cytosolic GB showed no such a correlation. Thus, an increase in total GB content does not necessarily lead to enhanced stress tolerance, but additional accumulation of chloroplastic GB is likely to further raise the level of stress tolerance beyond what we have observed.  相似文献   

11.
12.
山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析   总被引:43,自引:0,他引:43  
甜菜碱是一类广泛存在于生物体内的渗透保护剂。高等植物中,甜菜碱的生物合成经由胆碱→甜菜碱醛→甜菜碱两步反应完成,其中第一步反应,也是甜菜碱生物合成的限速反应,由胆碱单氧化物酶(CMO)催化。本研究以耐盐植物山菠菜(Atriplex hortensis)为材料构建了盐胁迫下的cDNA文库,用菠菜CMO cDNA为探针从中筛选获得一个长1.77kb的cDNA克隆,测序结果表明该克隆包含一个完整的开放读码框,编码一个由438个氨基酸构成的多肽,与菠菜和甜菜CMO的氨基酸序列同源性分别为81%和72%。同菠菜和甜菜中的CMO序列相比,山菠菜CMO基因(AhCMO)也具有保守的RieskeType[2Fe2S]簇结合区和保守的多铁原子核结合域。对盐处理条件下山菠菜CMO基因转录水平的研究表明CMO基因在盐胁迫情况下表达量增加约3倍。将CMO与35S启动子连接后转化烟草(Nictiana tabacumvar.Xanthi),获得了具有一定耐盐性状的转基因植株,在1.2%NaCl的盐浓度下生长良好。  相似文献   

13.
A chimeric gene encoding a ribozyme under the control of the cauliflower mosaic virus (CaMV) 35S promoter was introduced into transgenic tobacco plants. In vivo activity of this ribozyme, which was designed to cleave npt mRNA, was previously demonstrated by transient expression assays in plant protoplasts. The ribozyme gene was transferred into transgenic tobacco plants expressing an rbcS-npt chimeric gene as an indicator. Five double transformants out of sixteen exhibited a reduction in the amount of active NPT enzyme. To measure the amount of ribozyme produced, in the absence of its target, the ribozyme and target genes were separated by genetic segregation. The steady-state concentrations of ribozyme and target RNA were shown to be similar in the resulting single transformants. Direct evidence for a correlation between reduced npt gene expression and ribozyme expression was provided by crossing a plant containing only the ribozyme gene with a transgenic plant expressing the npt gene under control of the 35S promoter, i.e. the same promoter used to direct ribozyme expression. The expression of npt was reduced in all progeny containing both transgenes. Both steady-state levels of npt mRNA and amounts of active NPT enzyme are decreased. In addition, our data indicate that, at least in stable transformants, a large excess of ribozyme over target is not a prerequisite for achieving a significant reduction in target gene expression.  相似文献   

14.
Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is part of the biosynthetic pathway leading to plastoquinone and vitamin E. This enzyme is also the molecular target of various new bleaching herbicides for which genetically engineered tolerant crops are being developed. We have expressed a sensitive bacterial hppd gene from Pseudomonas fluorescens in plastid transformants of tobacco and soybean and characterized in detail the recombinant lines. HPPD accumulates to approximately 5% of total soluble protein in transgenic chloroplasts of both species. As a result, the soybean and tobacco plastid transformants acquire a strong herbicide tolerance, performing better than nuclear transformants. In contrast, the over-expression of HPPD has no significant impact on the vitamin E content of leaves or seeds, quantitatively or qualitatively. A new strategy is presented and exemplified in tobacco which allows the rapid generation of antibiotic marker-free plastid transformants containing the herbicide tolerance gene only. This work reports, for the first time, the plastome engineering for herbicide tolerance in a major agronomic crop, and a technology leading to marker-free lines for this trait.  相似文献   

15.
Conservation of Lethal-leaf spot 1 (Lls1) lesion mimic gene in land plants including moss is consistent with its recently reported function as pheophorbide a oxygenase (Pao) which catalyzes a key step in chlorophyll degradation (Pruzinska et al., 2003). A bioinformatics survey of complete plant genomes reveals that LLS1(PAO) belongs to a small 5-member family of non-heme oxygenases defined by the presence of Rieske and mononuclear iron-binding domains. This gene family includes chlorophyll a oxygenase (Cao), choline monooxygenase (Cmo), the gene for a 55 kDa protein associated with protein transport through the inner chloroplast membrane (Tic 55) and a novel 52 kDa protein isolated from chloroplasts (Ptc 52). Analysis of gene structure reveals that these genes diverged prior to monocot/dicot divergence. Homologues of LLS1(PAO), CAO, TIC55 and PTC52 but not CMO are found in the genomes of several cyanobacteria. LLS1(PAO), PTC52, TIC55 and a set of related cyanobacterial homologues share an extended carboxyl terminus containing a novel F/Y/W-x(2)-H-x(3)-C-x(2)-C motif not present in CAO. These proteins appear to have evolved during the transition to oxygenic photosynthesis to play various roles in chlorophyll metabolism. In contrast, CMO homologues are found only in plants and are most closely related to aromatic ring-hydroxylating enzymes from soil-dwelling bacteria, suggesting a more recent evolution of this enzyme, possibly by horizontal gene transfer. Our phylogenetic analysis of 95 extant non-heme dioxygenases provides a useful framework for the classification of LLS1(PAO)-related non-heme oxygenases.  相似文献   

16.
FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.  相似文献   

17.
Drought and salinity are the major factors that decrease crop yield. Organisms thriving in osmotic stress environments need adaptive mechanisms for adjusting their intracellular environment to external osmotic stress conditions. One such mechanism, to prevent water loss from the cells is to accumulate large amounts of low molecular weight organic compatible solutes such as proline, betaine and polyols to balance internal osmolarity of the cells. Accumulation of compatible solutes can be achieved by enhanced synthesis and/or reduced catabolism. Certain plants synthesize betaine in chloroplasts via a two-step oxidation of choline and betaine accumulation is associated with enhanced stress tolerance. Many important crop plants have low levels of betaine or none at all. Hence, betaine biosynthetic pathway is a target for metabolic engineering to enhance stress tolerance in crops. Introduction of betaine synthesis pathway into betaine non-accumulating plants has often improved stress tolerance. However, betaine levels of the engineered plants were generally low. To further enhance the betaine accumulation levels, we need to diagnose factors limitng betaine accumulation in engineered plants. Here we discuss recent progress on metabolic engineering of choline precursors for abiotic stress tolerance in plants.  相似文献   

18.
19.
Meng YL  Wang YM  Zhang B  Nii N 《Cell research》2001,11(3):187-193
INTRODUCTIONAmaranth is a C4 dicotyledonous mesophytecrop plant. A. tricofor is a major variety for veg-etable and ornamental crops, and is widely culti-vated in the wor1d. Osmoprotectant glycine betaine(GB) was detected in Amaranthaceae, A. HyPochon-driacus L[2] and A. Caudatus L[3, 4]. GB iswidespread and an effective osmoprotectant in manyplants[3]. We studied the photosynthetic adaptationmechanism of A. trico1or under salt stress due to ac-cumulation of GB[5].GB is synthesized …  相似文献   

20.
Pi Y  Jiang K  Cao Y  Wang Q  Huang Z  Li L  Hu L  Li W  Sun X  Tang K 《Molecular biotechnology》2009,41(2):115-122
Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in jasmonate (JA) biosynthetic pathway. An AOC gene (defined as CaAOC, Database Accession No. AY863428) had been isolated from Camptotheca acuminata in previous work. Real-time quantitative PCR analysis indicated that mRNA expression of CaAOC was induced by salt stress (120 mM NaCl) and low temperature (4 degrees C). In order to further investigate the role of AOC gene in the processes, CaAOC was introduced into tobacco via Agrobacterium tumefaciens, and the transgenic lines were subjected to the examination of tolerance against salt stress and low temperature. Under salt stress, the chlorophyll content in transgenic tobacco was higher than that of in the wild plants. The electrolyte leakage test revealed that transgenic tobacco plants were more resistant to low temperature over control. Furthermore, 5'-truncated CaAOC was inserted into pET30 and then expressed in Escherichia coli strain BL21DE3 (pLysS). Interestingly, the transformants could grow on 2YT agar containing 400 mM NaCl. Although these mechanisms are not clear yet, this study suggested that CaAOC could not only be a potential target gene in the engineering of plants and bacteria for improved endurance against salt stress, but also be quite useful in enhancing plant tolerance to cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号