首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When Escherichia coli was grown in medium containing both inosine and glycine, the PurR repressor protein was shown to be responsible for a twofold reduction from the fully induced glycine cleavage enzyme levels. This twofold repression was also seen by measuring beta-galactosidase levels in cells carrying a lambda gcvT-lacZ gene fusion. In this fusion, the synthesis of beta-galactosidase is under the control of the gcv regulatory region. A DNA fragment carrying the gcv control region was shown by gel mobility shift assay and DNase I footprinting to bind purified PurR protein, suggesting a direct involvement of the repressor in gcv regulation. A separate mechanism of purine-mediated regulation of gcv was shown to be independent of the purR gene product and resulted in an approximately 10-fold reduction of beta-galactosidase levels when cells were grown in medium containing inosine but lacking the inducer glycine. This additional repression was dependent upon a functional gcvA gene, a positive activator for the glycine cleavage enzyme system. A dual role for the GcvA protein as both an activator in the presence of glycine and a repressor in the presence of inosine is suggested.  相似文献   

2.
A new mutation in Escherichia coli, designated gcvA1, that results in noninducible expression of both gcv and a gcvT-lacZ gene fusion was isolated. A plasmid carrying the wild-type gcvA gene complemented the mutation and restored glycine-inducible gcv and gcvT-lacZ gene expression. These results suggest that gcvA encodes a positive-acting regulatory protein that acts in trans to increase expression of gcv.  相似文献   

3.
Escherichia coli K12 mutants defective in the glycine cleavage enzyme system   总被引:12,自引:0,他引:12  
Two routes of one-carbon biosynthesis have been described in Escherichia coli K12. One is from serine via the serine hydroxymethyltransferase (SHMT) reaction, and the other is from glycine via the glycine cleavage (GCV) enzyme system. To isolate mutants deficient in the GCV pathway, we used a selection procedure that is based on the assumption that loss of this enzyme system in strains blocked in serine biosynthesis results in their inability to use glycine as a serine source. Mutants were accordingly isolated that grow with a serine supplement, but not with a glycine supplement. Enzyme assays demonstrated that three independently isolated mutants have no detectable GCV enzyme activity. The absence of a functional GCV pathway results in the excretion of glycine, but has no affect on the cell's primary source of one-carbon units, the SHMT reaction. The new mutations, designated gcv, were mapped between the serA and lysA genes on the E. coli chromosome.  相似文献   

4.
The lpd-encoded lipoamide dehydrogenase, common to the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes, also functions as the lipoamide dehydrogenase (L protein) in the Escherichia coli glycine cleavage (GCV) enzyme complex. Inducible GCV enzyme activity was not detected in an lpd deletion mutant; lpd+ transductants had normal levels of inducible GCV enzyme activity. A serA lpd double mutant was unable to utilize glycine as a serine source and lacked detectable GCV enzyme activity, the phenotype of a serA gcv mutant. Transformation of the double mutant with a plasmid encoding a functional lpd gene restored the ability of the mutant to use glycine as a serine source and restored inducible GCV enzyme activity to normal levels. The presence of acetate and succinate in the growth medium of a strain wild type for lpd and gcv resulted in a 50% reduction in inducible GCV enzyme activity. Enzyme levels were restored to normal under these growth conditions when the strain was transformed with a plasmid encoding a functional lpd gene.  相似文献   

5.
On the basis of protein homology, nhaR has previously been shown to belong to a large family of regulatory proteins, the LysR family (Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 6602-6606). In this work we show that nhaR is a regulator of nhaA, a gene encoding a Na+/H+ antiporter in Escherichia coli. Multicopy plasmid bearing nhaR enhances the Na(+)-dependent induction of a chromosomal nhaA'-'lacZ fusion. Extracts derived from cells overexpressing nhaR exhibit specific DNA binding capacity to the upstream sequences of nhaA. Construction of an nhaR deletion mutant (OR100) shows that nhaR is required in addition to nhaA to tolerate the extreme conditions under which nhaA is indispensable. Whereas OR100 grows like the wild type at neutral pH even at high Na+ concentrations (700 mM), it becomes much more sensitive to Na+ (greater than 300 mM) at pH 8.5; furthermore, OR100 is more sensitive to Li+ (100 mM) than the wild type. Nevertheless, the phenotype of OR100, which is more resistant to Na+, Li+, and alkaline pH than a delta nhaA strain (NM81), implies that the regulation exerted by nhaR is not complete and that some expression of nhaA exists in OR100. Accordingly, the effect of nhaR in cells is dependent on the level of nhaA. OR200, a nhaA and nhaR deletion mutant, has the same phenotype as NM81. Multicopy plasmid bearing nhaR does not change the phenotype of either OR200 or NM81. On the other hand, multicopy nhaA renders the cells Li(+)- and and Na(+)-resistant even without nhaR.  相似文献   

6.
7.
The nucleotide sequence of an Escherichia coli gene which presumably encodes the H-protein of the glycine cleavage (GCV) enzyme complex is presented. The gene, designated gcvH, encodes a polypeptide of 128 amino acids with a calculated molecular weight of 13,665 daltons. The translation start site was determined by N-terminal amino acid sequence analysis of a gcvH-lacZ encoded fusion protein. The E. coli H-protein shows extensive homology with the H-proteins from the pea (Pisum sativum) and the chicken liver GCV enzyme complexes. 85 of 128 amino acid residues are identical or chemically similar between the E. coli and the pea H-proteins, and 74 of 128 amino acid residues are identical or chemically similar between the E. coli and the chicken liver H-proteins. All three proteins have identical amino acid sequences from residues 61-65. This sequence contains the lysyl residue involved in lipoic acid attachment in the chicken liver H-protein.  相似文献   

8.
A major component of the Escherichia coli response to elevated medium osmolarity is the synthesis of a periplasmic protein with an Mr of 31,000. The protein was absent in mutants with lambda placMu insertions in the proU region, a locus involved in transport of the osmoprotectant glycine betaine. This periplasmic protein has now been purified to homogeneity. Antibody directed against the purified periplasmic protein crossreacts with the fusion protein produced as a result of the lambda placMu insertion, indicating that proU is the structural gene specifying the 31-kDa protein. The purified protein binds glycine betaine with high affinity but has no affinity for either proline or choline, clarifying the role of proU in osmoprotectant transport. The amino-terminal sequence of the mature glycine betaine binding protein is Ala-Asp-Leu-Pro-Gly-Lys-Gly-Ile-Thr-Val-Asn-Pro.  相似文献   

9.
Summary When E. coli or infected E. coli are gently lysed the DNA is released as a very fast sedimenting species that is presumably bound to membrane material. If this complex is now subjected to restriction enzyme cleavage, only a minor fraction of the fast sedimenting DNA remains and this is found, after purification, to be enriched for branched molecules.  相似文献   

10.
The SbcCD protein is a member of a group of nucleases found in bacteriophage T4 and T5, eubacteria, archaebacteria, yeast, Drosophila, mouse and man. Evidence from electron microscopy has revealed a distinctive structure consisting of two globular domains linked by a long region of coiled coil, similar to that predicted for the members of the SMC family. That a nuclease should have such an unusual structure suggests that its mode of action may be complex. Here we show that the protein degrades duplex DNA in a 3'-->5' direction. This degradation releases products half the length of the original duplex suggesting simultaneous degradation from two duplex ends. This may provide a link to the unusual structure of the protein since our data are consistent with recognition and cleavage of DNA ends followed by 3'-->5' nicking by two nucleolytic centres within a single nuclease molecule that releases a half length limit product. We also show that cleavage is not simply at the point of a single-strand/double-stand transition and that despite the dominant 3'-->5' polarity of degradation, a 5' single-strand can be cleaved when attached to duplex DNA. The implications of this mechanism for the processing of hairpins formed during DNA replication are discussed.  相似文献   

11.
Escherichia coli endodeoxyribonuclease V acts at many sites of damage in duplex DNA, including apurinic/apyrimidinic sites, lesions induced by ultraviolet light which are not pyrimidine dimers, adducts of 7-bromomethylbenz[a]anthracene, and, as demonstrated earlier (Gates, F. T., and Linn, S. (1977a) J. Biol. Chem. 252. 1647-1653), it degrades uracil-containing duplex DNA most efficiently. The cleavage rate increases with increasing substitution of uracil for thymine in T5 DNA, with a replacement of one-eight of thymine generating the apparent maximum cleavage rate. However, the apparent reaction limit with DNA containing 3.8% of thymine replaced by uracil corresponds to cleavage at only 6% of the dUMP residues. Evidently, the enzyme recognizes some peculiarities of abnormal DNA structure, but not simply distortions, since some lesions, including pyrimidine dimers, are not substrates. Endonuclease V generates double strand breaks in a constant ratio to single strand nicks, regardless of the substrate. It degrades DNA processively, completing the digestion of one substrate molecule before proceeding to the next. The enzyme also appears to act cooperatively. Cleavage at methylbenz[a]anthracene adducts is usually or always 5' to the lesion. Endonuclease V seems well suited to act as a DNA repair enzyme, surveying the genome for structural distortions generated by lesions for which specific repair systems might not exist.  相似文献   

12.
13.
14.
The tyrT locus in Escherichia coli codes for two gene copies of tRNA(1Tyr). Both genes are organized in one operon, which has a unique structure. The two tRNA genes are separated by a spacer segment highly homologous to a part of a unit which is repeated three times in the distal portion of the locus. This operon also contains coding capacity for a small basic protein. A genomic deletion of this locus was constructed and marked by a kanamycin resistance cassette. Deletion mutants exhibited a characteristic phenotype when cells were shifted from rich medium to minimal medium. The cells entered a transient lag phase, apparently resulting from specific glycine starvation. This phenotype involved stringent response and was therefore not observed in relA derivatives. The genomic deletion was complemented in trans by a plasmid-borne tyrT locus. From deletion mapping, it can be concluded that a product of the tyrT operon is responsible for complementation. However, neither the tRNA(1Tyr) nor the proposed basic protein is the complementation-competent entity.  相似文献   

15.
16.
Protein n, essential in forming the primosome for the in vitro conversion of phi X174 single-stranded (SS) DNA to the duplex replicative form (RF), has been purified about 5000-fold to near homogeneity from Escherichia coli. Protein n is heat- and acid-resistant and N-ethyl-maleimide-sensitive. It appears to be a dimer of 12,000 (+/- 2000)-dalton polypeptides. About 80 molecules of protein n are present/cell. Protein n binding to phi X SS DNA depends on the presence of single-strand binding protein (SSB). This requirement for SSB reflects a direct interaction of protein n and SSB. About 30 protein n monomers can be bound to an SSB-coated circle. However, in forming the primosome on an SSB-coated phi X circle, an input of only 2-3 protein n monomers is required and 1 monomer bound/circle. Retention of this low level of protein n on SSB-coated phi X SS DNA is dependent upon protein n', a DNA-dependent ATPase (dATPase) that guides primosome assembly. This single protein n monomer is retained in the assembled primosome, which is conserved on the completed parental RF and participates in the next stage of the replicative cycle, production of progeny RF.  相似文献   

17.
T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  相似文献   

18.
DNA sequence of the araC regulatory gene from Escherichia coli B/r.   总被引:16,自引:5,他引:11       下载免费PDF全文
The DNA sequence of the araC regulatory gene from Escherichia coli B/r has been determined by the base-specific chemical cleavage reactions of Maxam and Gilbert. An open reading frame is found which codes for a protein of 292 amino acids. A nonsense mutation, araC5, is shown to result from a G to A transition at nucleotide 429 converting the tryptophan codon TGG to the amber codon TAG. A deletion which does not recombine with any known point mutation in araC, delta(araCO)719, removes all but the last 22 codons of the gene.  相似文献   

19.
The consensus DNA site for binding of the Escherichia coli catabolite gene activator protein (CAP) is 22 base pairs in length and is 2-fold symmetric: 5'-AAATGTGATCTAGATCACATTT-3'. Positions 4 to 8 of each half of the consensus DNA half-site are the most strongly conserved. In this report, we analyze the effects of substitution of DNA base pairs at positions 4 to 8, the effects of substitution of thymine by uracil and by 5-methylcytosine at positions 4, 6, and 8, and the effect of dam methylation of the 5'-GATC-3' sequence at positions 7 to 10. All DNA sites having substitutions of DNA base pairs at positions 4 to 8 exhibit lower affinities for CAP than does the consensus DNA site, consistent with the proposal that the consensus DNA site is the ideal DNA site for CAP. Specificity for T:A at position 4 appears to be determined solely by the thymine 5-methyl group. Specificity for T:A at position 6 and specificity for A:T at position 8 appear to be determined in part, but not solely, by the thymine 5-methyl group. dam methylation has little effect on CAP.DNA complex formation. The thermodynamically defined consensus DNA site spans 28 base pairs. All, or nearly all, DNA determinants required for maximal affinity for CAP and for maximal thermodynamically defined CAP.DNA ion pair formation are contained within a 28-base pair DNA fragment that has the 22-base pair consensus DNA site at its center. The quantitative data in this report provide base-line thermodynamic data required for detailed investigations of amino acid-base pair and amino acid-phosphate contacts in this protein-DNA complex.  相似文献   

20.
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich sequences, as found in the recombination hot spot Chi (5′-GCTGGTGG-3′). When this sequence is located within an oligonucleotide, binding of RecA is phased relative to it, with a periodicity of three nucleotides. This implies that there are three separate nucleotide-binding sites within a RecA monomer that may exhibit preferences for the four different nucleotides. Here we have used a RecA coprotease assay to further probe the ssDNA sequence specificity of E.coli RecA protein. The extent of self-cleavage of a λ repressor fragment in the presence of RecA, ADP-AlF4 and 64 different trinucleotide-repeating 15mer oligonucleotides was determined. The coprotease activity of RecA is strongly dependent on the ssDNA sequence, with TGG-repeating sequences giving by far the highest coprotease activity, and GC and AT-rich sequences the lowest. For selected trinucleotide-repeating sequences, the DNA-dependent ATPase and DNA-binding activities of RecA were also determined. The DNA-binding and coprotease activities of RecA have the same sequence dependence, which is essentially opposite to that of the ATPase activity of RecA. The implications with regard to the biological mechanism of RecA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号