首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase variation of type 1 fimbriae of Escherichia coli requires the site-specific recombination of a short invertible element. Inversion is catalyzed by FimB (switching in either direction) or FimE (inversion mainly from on to off) and is influenced by auxiliary factors integration host factor (IHF) and leucine-responsive regulatory protein (Lrp). These proteins bind to sites (IHF site II and Lrp sites 1 and 2) within the invertible element to stimulate recombination, presumably by bending the DNA to enhance synapses. Interaction of Lrp with a third site (site 3) cooperatively with sites 1 and 2 (termed complex 1) impedes recombination. Inversion is stimulated by the branched-chain amino acids (particularly leucine) and alanine, and according to a current model, the amino acids promote the selective loss of Lrp from site 3 (complex 2). Here we show that the central portion of the fim invertible element, situated between Lrp site 3 and IHF site II, is dispensable for FimB recombination but that this region is also required for full amino acid stimulation of inversion. Further work reveals that the region is likely to contain multiple regulatory elements. Lrp site 3 is shown to bind the regulatory protein with low affinity, and a mutation that enhances binding to this element is found both to diminish the stimulatory effects of IVLA on FimB recombination and to inhibit recombination in the absence of the amino acids. The results obtained emphasize the importance of Lrp site 3 as a control element but also highlight the complexity of the regulatory system that affects this site.  相似文献   

2.
The phase variation of type 1 fimbriae in Escherichia coli is associated with the site-specific inversion of a short DNA element. Recombination at fim requires fimB and fimE , and their products are considered to be the fim recombinases. In this study, FimB and FimE were overproduced and extracts containing the proteins were shown to (i) bind to and (ii) invert the fim switch in vitro . Phenanthroline-copper protection of DNA–protein complexes showed that both FimB and FimE bind to half-sites that flank, and overlap with, the left and right inverted repeats (IRL and IRR, respectively) of the fim switch. Alignment of the four half-sites identified a conserved 5'-CA doublet; mutation of these two bases lowers the affinity of binding of both FimB and FimE to the inverted repeats, and greatly diminishes inversion of the fim switch in vivo . The specificity of the fim recombinases observed in vivo (FimB switching in both directions; FimE switching from on-to-off only) was maintained in vitro Furthermore, the different binding affinities of FimB and FimE for the various half-site combinations suggests that the specificity of FimE could arise, in part, from the low affinity of FimE for IRL (off).  相似文献   

3.
We have investigated the capacity of a well-defined Escherichia coli fimB strain, AAEC350 (a derivative of MG1655), to express type 1 fimbriae under various growth conditions. The expression of type 1 fimbriae is phase-variable due to the inversion of a 314-bp DNA segment. Two tyrosine recombinases, FimB and FimE, mediate the inversion of the phase switch. FimB can carry out recombination in both directions, whereas the current evidence suggests that FimE-catalyzed switching is on-to-off only. We show here that AAEC350 is in fact capable of off-to-on phase switching and type 1 fimbrial expression under aerobic static growth conditions. The phase switching is mediated by FimE, and allows emerging fimbriate AAEC350 to outgrow their non-fimbriate counterparts by pellicle formation. Following inversion of the phase switch, this element can remain phase-locked in the on orientation due to integration of insertion sequence elements, viz. IS1 or IS5, at various positions in either the fimE gene or the phase switch.  相似文献   

4.
Phase-variable expression of type 1 fimbriae in Escherichia coli K-12 involves inversion by site-specific recombination of a 314 bp sequence containing the promoter for fim structural gene expression. The invertible sequence is flanked by 9 bp inverted repeats, and each repeat is in turn flanked by non-identical recombinase-binding elements (RBEs) to which the FimB or FimE site-specific recombinases bind. These proteins have distinct DNA inversion preferences: FimB inverts the switch in the ON-to-OFF and OFF-to-ON directions with similar efficiencies, whereas FimE inverts it predominantly in the ON-to-OFF direction. We have found that FimB and FimE invert the switch through a common mechanism. A genetic investigation involving base-by-base substitution combined with a biochemical study shows that the same DNA cleavage and religation sites are used within the 9 bp inverted repeats, and that each recombination involves a common 3 bp spacer region. A comprehensive programme of RBE exchanges and replacements reveals that FimB is much more tolerant of RBE sequence variation than FimE. The asymmetric location of conserved 5'-CA motifs at either side of each spacer region allows the inside and outside of the switch to be differentiated while the RBE sequence heterogeneity permits its ON and OFF forms to be distinguished by the recombinases.  相似文献   

5.
6.
7.
8.
Over 80% of uropathogenic Escherichia coli express type 1 fimbriae. Expression is phase variable, and regulation of phase switching can differ between isolates. Previously, this was explained by differences in the expression of the fim recombinases, FimB and FimE. Our study of 50 uropathogenic E . coli isolates confirms variation in the regulation of type 1 fimbriae but, in many cases, the variation could be accounted for by sequence changes within and adjacent to the fim switch, rather than by differences in recombinase expression. This was demonstrated by moving the switch from the isolates into an isogenic background and comparing the switching behaviour with that of the original isolate. Isolates could be arranged into groups based on fim switch regulation and sequence similarity. In certain cases, the altered regulation was located to specific basepair changes within the fim switch. Sequence changes were found that had a marked effect on the activity of either FimB or FimE switching, while others affected FimB switching in only one direction. These results emphasize the value of using naturally selected sequence variation to further the understanding of gene regulation.  相似文献   

9.
Expression of fimA, the structural gene for type 1 fimbriae of Escherichia coli, is phase variable. Significant homologies were identified between the recombinases which control fimbrial phase variation, FimB and FimE, and the integrase class of site-specific recombinases. Normal expression of fimA was shown to require the integration host factor (IHF). Mutations in either the himA-or the himD (hip) gene, which encode the alpha and beta subunits of IHF, respectively, prevented phase variation and locked expression of fimA in either the "on" or "off" phase. In addition, both himA and himD lesions caused a sevenfold reduction in expression of a phi(fimA-lacZ) operon fusion in strains in which fimA was locked in the on phase. Thus, IHF plays a dual role in controlling fimA expression: it is required both for inversion of the fimA control region and for efficient expression from the fimA promoter. A mechanism by which IHF may exert control over fimA expression is discussed.  相似文献   

10.
11.
Pathogenic Escherichia coli often carry determinants for several different adhesins. We show a direct communication between two adhesin gene clusters in uropathogenic E.coli: type 1 fimbriae (fim) and pyelonephritis-associated pili (pap). A regulator of pap, PapB, is a key factor in this cross-talk. FimB recombinase turns on type 1 fimbrial expression, and PapB inhibited phase transition by FimB in both off-to-on and on-to-off directions. On-to-off switching requiring FimE was increased by PapB. By analysis of FimB- and FimE-LacZ translational fusions it was concluded that the increase in on-to-off transition rates was via an increase in FimE expression. Inhibition of FimB-promoted switching was via a different mechanism: PapB inhibited FimB-promoted in vitro recombination, indicating that FimB activity was blocked at the fim switch. In vitro analyses showed that PapB bound to several DNA regions of the type 1 fimbrial operon, including the fim switch region. These data show that Pap expression turns off type 1 fimbriae expression in the same cell. Such cross-talk between adhesin gene clusters may bring about appropriate expression at the single cell level.  相似文献   

12.
Escherichia coli Nissle 1917 has been used as a probiotic against intestinal disorders for many decades. It is a good colonizer of the human gut and has been reported to be able to express type 1 fimbriae. Type 1 fimbriae are surface organelles which mediate alpha-D-mannose-sensitive binding to various host cell surfaces. The expression is phase variable, and two tyrosine recombinases, FimB and FimE, mediate the inversion of the fimbrial phase switch. Current evidence suggests that FimB can carry out recombination in both directions, whereas FimE-catalyzed switching is on to off only. We show here that under liquid shaking growth conditions, Nissle 1917 did not express type 1 fimbriae, due to a truncation of the fimB gene by an 1,885-bp insertion element. Despite its fimB null status, Nissle 1917 was still capable of off-to-on switching of the phase switch and expressing type 1 fimbriae when grown under static conditions. This phase switching was not catalyzed by FimE, by truncated FimB, or by information residing within the insertion element. No further copies of fimB seemed to be present on the chromosome of Nissle 1917, suggesting that another tyrosine recombinase in Nissle 1917 is responsible for the low-frequency off-to-on inversion of the phase switch that is strongly favored under static growth conditions. This is the first report documenting the non-FimB- or non-FimE-catalyzed inversion of the fim switch.  相似文献   

13.
14.
The manner in which integration host factor (IHF) regulates lambda site-specific recombination has been analyzed by examining the behavior of both wild-type and mutant DNAs in integrative and excisive recombination as well as in protein binding. While integrative recombination of an attP with two base changes in the H1 site required 8-fold more IHF than did wild type, binding to this site was lowered at least 500-fold, suggestive of cooperative interactions. A mutant attP with nine base changes did not integrate at all in vitro, with the defect being less severe in vivo. IHF inhibition of excisive recombination was relieved by both mutations in vitro and in vivo. These results imply that occupancy of the H1 site is critical for determining the direction of recombination. It is proposed that IHF inhibition of excision provides a monitor of the strength of the induction stimulus and the nutritional state of the cell; this would allow the prophage to excise selectively in conditions which favor successful completion of the lytic cycle.  相似文献   

15.
The serine recombinase Sin requires a non-specific DNA-bending protein such as Hbsu for activity at its recombination site resH. Hbsu, and Sin subunits bound at site II of resH, together regulate recombination, ensuring selectivity for directly repeated resH sites by specifying assembly of an intertwined synapse. To investigate the role of the DNA-bending protein in defining the architecture of the synapse, we constructed a chimaeric recombination site (resF) which allows Hbsu to be substituted by IHF, binding specifically between site I (the crossover site) and site II. Two Sin dimers and one IHF dimer can bind together to the closely adjoining sites in resF, forming folded complexes. The precise position of the IHF site within the site I-site II spacer determines the conformation of these complexes, and also the reactivity of the resF sites in recombination assays. The data suggest that a sharp bend with a specific geometry is required in the spacer DNA, to bring the Sin dimers at sites I and II together in the correct relative orientation for synapse assembly and regulation, consistent with our model for a highly condensed synapse in which Hbsu/IHF has a purely architectural function.  相似文献   

16.
The expression of type 1 fimbriae in Escherichia coli is phase variable, with cells switching between fimbriate (ON) and afimbriate (OFF) phases. The phase variation is dependent on the orientation of a 314 bp DNA element (the switch) that undergoes DNA inversion. DNA inversion requires either fimB or fimE, site-specific recombinases that differ in both specificity and activity. Whereas fimB promotes recombination with little orientational bias, fimE promotes recombination in the ON-to-OFF direction exclusively. In wild-type cells, fimE activity predominates and, hence, most bacteria are afimbriate. Here, it is shown that fimE specificity is caused by two different, but complementary, mechanisms. First, FimE shows a strong preference for the switch in the ON orientation as a substrate for recombination. Differences in the nucleotide sequence of the recombinase binding sites is a key factor in determining FimE specificity, although one or more additional cis-active sites that flank the fim switch also appear to be involved. Secondly, the orientation of the switch controls fimE in cis, most probably to control recombinase expression.  相似文献   

17.
18.
We have analyzed 43 recessive mutations reducing meiotic intragenic recombination in Schizosaccharomyces pombe. These mutations were isolated by a screen for reduced plasmid-by-chromosome recombination at the ade6 locus. Sixteen of the mutations define 10 new complementation groups, bringing to 17 the number of genes identified to be involved in meiotic recombination. The mutations were grouped into three discrete classes depending on the severity of the recombination deficiency in crosses involving the ade6-M26 recombination hotspot. Class I mutations caused at least a 1000-fold reduction in M26-stimulated intragenic recombination at the ade6 locus. Class II mutations reduced M26-stimulated recombination approximately 100-fold. Class III mutations caused a 3-10-fold reduction in either M26-stimulated or non-hotspot recombination. We obtained multiple alleles of class I and class II mutations, suggesting that we may be nearing saturation for mutations of this type. As a first step toward mapping, we used mitotic segregation to assign fourteen of the rec genes to chromosomes. Mutations in the six rec genes tested also caused a decrease in intragenic recombination at the ura4 locus; five of these mutations also reduced intergenic recombination between the pro2 and arg3 genes. These results indicate that these multiple rec gene products are required for high level meiotic recombination throughout the S. pombe genome.  相似文献   

19.
20.
Site-specific recombinases of the integrase family usually require cofactors to impart directionality in the recombination reactions that they catalyze. The FimB integrase inverts the Escherichia coli fim switch (fimS) in the on-to-off and off-to-on directions with approximately equal efficiency. Inhibiting DNA gyrase with novobiocin caused inversion to become biased in the off-to-on direction. This directionality was not due to differential DNA topological distortion of fimS in the on and off phases by the activity of its resident P(fimA) promoter. Instead, the leucine-responsive regulatory (Lrp) protein was found to determine switching outcomes. Knocking out the lrp gene or abolishing Lrp binding sites 1 and 2 within fimS completely reversed the response of the switch to DNA relaxation. Inactivation of either Lrp site alone resulted in mild on-to-off bias, showing that they act together to influence the response of the switch to changes in DNA supercoiling. Thus, Lrp is not merely an architectural element organizing the fim invertasome, it collaborates with DNA supercoiling to determine the directionality of the DNA inversion event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号