首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have isolated chromosomes from Chinese hamster ovary cells arrested in mitosis with vinblastine and examined the interactions of their kinetochores with purified tubulin in vitro. The kinetochores nucleate microtubule (MT) growth with complex kinetics. After an initial lag phase, MTs are continuously nucleated with both plus and minus ends distally localized. This mixed polarity seems inconsistent with the formation of an ordered, homopolar kinetochore fiber in vivo. As isolated from vinblastine-arrested cells, kinetochores contain no bound tubulin. The kinetochores of chromosomes isolated from colcemid-arrested cells or of chromosomes incubated with tubulin in vitro are brightly stained after anti-tubulin immunofluorescence. This bound tubulin is probably not in the form of MTs. It is localized to the corona region by immunoelectron microscopy, where it may play a role in MT nucleation in vitro.  相似文献   

2.
Antibodies from the serum of patients with the autoimmune disease scleroderma CREST were used to investigate the association and distribution of kinetochores in mouse cells during meiosis and spermiogenesis. The pattern of indirect immunofluorescent staining in pachytene nuclei indicated that each autosomal bivalent contains one fluorescent spot. Throughout pachytene, the kinetochores were arranged non-randomly into several clusters and distributed around the periphery of the nucleus. In subsequent stages of meiotic prophase I, distribution was random and the number of fluorescent spots increased from 21 to 40 corresponding to the diploid chromosome number and the number of halfbivalents oriented to the spindle poles at the metaphase I. Twenty pairs of kinetochores were observed at metaphase II. During spermiogenesis, the number of kinetochores correlated with the haploid chromosome number in early spermatids but tandem association of centromeres and clustering into a conspicuous chromocenter corresponded to a significant reduction in the number of fluorescent foci in mid-spermatid nuclei. The number of stained sites per nucleus continued to decrease during sperm maturation and total absence of staining was apparent in mature spermatozoa. Immunoblotting of proteins extracted from mature sperm however, indicated that a kinetochore antigen of Mr 80,000 was still present. Therefore, the absence of kinetochore staining in mature spermatozoa is probably due to the blockage of epitopes during chromatin condensation.  相似文献   

3.
When treated with an anti-kinetochore antibody present in the sera of scleroderma (var. CREST) patients, most chromosomes exhibit kinetochore dots at the position of the centromere. In this paper we report that some chromosomes in the mouse x human somatic cell hybrid fail to show these dots. In the early passages in a hybrid, HYG-1, the frequency of such chromosomes was higher (0.85%) than in later passages (0.45%) studied after five months of continuous culturing. In parallel, the mean number of human chromosomes in the hybrid also dropped. The somewhat hypodiploid parental cell lines, when similarly treated, showed only a rare chromosome without kinetochore dots. Immunoblots of the proteins showed that the sera used for kinetochore detection recognized all major centromere proteins (CENPs). Electron microscopy of some offlying metaphase chromosomes in another hybrid, HR61, exhibited a lack of trilamellar kinetochores. This study suggests that akinetochoric chromosomes might provide a novel mechanism responsible for chromosome loss and genesis of aneuploidy. In early passages, some cells in the hybrid showed detached kinetochores. These autonomous kinetochores could be seen in clusters and involved some mouse chromosomes also. Potential significance of these autonomous kinetochores in generating compound centromeres is discussed.  相似文献   

4.
The kinetochore is part of the metaphase chromosome scaffold   总被引:31,自引:19,他引:12  
We used antisera from patients with the CREST syndrome of scleroderma (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) to show that an antigenic component of the kinetochore present in metaphase chromosomes is also present in nonhistone chromosome scaffolds isolated following extensive digestion of the DNA and extraction of the bulk of chromosomal protein. All sera from 12 scleroderma CREST patients previously shown by immunofluorescence microscopy to have circulating antikinetochore antibodies recognise a protein of Mr 77,000 (CREST-77) in an immunoblotting assay. 9 of the 12 sera also recognise an antigen of Mr 110,000 (CREST-110). These proteins are present in isolated chromosomes and nonhistone scaffolds derived from them by two different procedures. Sera of five scleroderma CREST patients who are antikinetochore negative (by immunofluorescence) bind to neither protein in immunoblots. These data suggest that CREST-77 (and possibly CREST-110) is a component of the human kinetochore, and that the kinetochore is an integral part of the mitotic chromosome scaffolding.  相似文献   

5.
We identified a patient (CAG) with scleroderma whose serum contained a high titer of IgG class antibodies that stained nucleoli in a pattern of independent tiny spots. When tested on isolated chromosomes, these antibodies selectively stained the nucleolus-organizing regions (NOR) of chromosomes 13, 14, 15, 21, and 22. These staining patterns were not altered when substrate cells and chromosomes were treated with RNase, 0.1 M HC1, or 4 M urea, but they were abolished by treatment with DNase and trypsin. Immunoblots performed with serum CAG on isolated nucleolar substrates identified a protein antigen of approximately 90 kDa. Antibodies affinity-purified from this protein selectively stained nucleoli and NOR chromosomal regions. Therefore, this protein is the antigen that accounts for the ability of serum CAG to recognize the NOR. In a search for the NOR 90-kDa specificity among 254 patients with various rheumatic diseases, we found nine additional patients whose sera stained metaphase chromosomes selectively at the NOR. Sera from five of them (three with scleroderma, two of unknown diagnosis) recognized a protein that electrophoretically co-migrated with the CAG antigen. Thus, scleroderma is present in at least four of six who appear to have this specificity. We conclude that autoantibodies to the NOR 90-kDa antigen have an association with scleroderma and may be useful diagnostically and as a probe for further studies of the biology of the cell nucleolus.  相似文献   

6.
The chromosomes of the Indian muntjac (Muntiacus muntjak vaginalis) are unique among mammals due to their low diploid number (2N=6, 7) and large size. It has been proposed that the karyotype of this small Asiatic deer evolved from a related deer the Chinese muntjac (Muntiacus reevesi) with a diploid chromosome number of 2n= 46 consisting of small telocentric chromosomes. In this study we utilized a kinetochore-specific antiserum derived from human patients with the autoimmune disease scleroderma CREST as an immunofluorescent probe to examine kinetochores of the two muntjac species. Since CREST antiserum binds to kinetochores of mitotic chromosomes as well as prekinetochores in interphase nuclei, it was possible to identify and compare kinetochore morphology throughout the cell cycle. Our observations indicated that the kinetochores of the Indian muntjac are composed of a linear beadlike array of smaller subunits that become revealed during interphase. The kinetochores of the Chinese muntjac consisted of minute fluorescent dots located at the tips of the 46 telocentric chromosomes. During interphase, however, the kinetochores of the Chinese muntjac clustered into small aggregates reminiscent of the beadlike arrays seen in the Indian muntjac. Morphometric measurements of fluorescence indicated an equivalent amount of stained material in the two species. Our observations indicate that the kinetochores of the Indian muntjac are compound structures composed of linear arrays of smaller units the size of the individual kinetochores seen on metaphase chromosomes of the Chinese muntjac. Our study supports the notion that the kinetochores of the Indian muntjac evolved by linear fusion of unit kinetochores of the Chinese muntjac. Moreover, it is concluded that the evolution of compound kinetochores may have been facilitated by the nonrandom aggregation of interphase kinetochores in the nuclei of the ancestral species.  相似文献   

7.
The human autoantigen CENP-C has been demonstrated by immunoelectron microscopy to be a component of the inner kinetochore plate. Here we have used antibodies raised against various portions of CENP-C to probe its function in mitosis. We show that nuclear microinjection of anti- CENP-C antibodies during interphase causes a transient arrest at the following metaphase. Injection of the same antibodies after the initiation of prophase, however, does not disrupt mitosis. Correspondingly, indirect immunofluorescence using affinity-purified human anti-CENP-C antibodies reveals that levels of CENP-C staining are reduced at centromeres in cells that were injected during interphase, but appear unaffected in cells which were injected during mitosis. Thus, we suggest that the injected antibodies cause metaphase arrest by reducing the amount of CENP-C at centromeres. Examination of kinetochores in metaphase-arrested cells by electron microscopy reveals that the number of trilaminar structures is reduced. More surprisingly, the few remaining kinetochores in these cells retain a normal trilaminar morphology but are significantly reduced in diameter. In cells arrested for extended periods, these small kinetochores become disrupted and apparently no longer bind microtubules. These observations are consistent with an involvement of CENP-C in kinetochore assembly, and suggest that CENP-C plays a critical role in both establishing and/or maintaining proper kinetochore size and stabilizing microtubule attachments. These findings also support the idea that proper assembly of kinetochores may be monitored by the cell cycle checkpoint preceding the transition to anaphase.  相似文献   

8.
Summary We found previously that in living cells ofOedogonium cardiacum andO. donnellii, mitosis is blocked by the drug cytochalasin D (CD). We now report on the staining observed in these spindles with fluorescently actin-labeling reagents, particularly Bodipy FL phallacidin. Normal mitotic cells exhibited spots of staining associated with chromosomes; frequently the spots appeared in pairs during prometaphase-metaphase. During later anaphase and telophase, the staining was confined to the region between chromosomes and poles. The texture of the staining appeared to be somewhat dispersed by CD treatment but it was still present, particularly after shorter (<2 h) exposure. Electron microscopy of CD-treated cells revealed numerous spindle microtubules (MTs); many kinetochores had MTs associated with them, often laterally and some even terminating in the kinetochore as normal, but the usual bundle of kinetochore MTs was never present. As treatment with CD became prolonged, the kinetochores became shrunken and sunk into the chromosomes. These results support the possibility that actin is present in the kinetochore ofOedogonium spp. The previous observations on living cells suggest that it is a functional component of the kinetochore-MT complex involved in the correct attachment of chromosomes to the spindle.Abbreviations CD cytochalasin D - EM electron microscopy - MBS m-maleimidobenzoyl N-hydroxysuccinimide ester - MTs microtubules  相似文献   

9.
Antigens associated with mammalian centromeres were localized at the high and electron microscopic levels using the peroxidase-labeled antibody method. The antibody used was of a type naturally occurring in the sera of patients with scleroderma. At the light microscopic level, it reacts specifically with the centromere regions of chromosomes in a variety of mammalian species and strains in discrete foci in interphase nuclei. We find that the number of foci approximates the number of chromosomes present in the various cell types. At the ultrastructural level, the antigenic foci are confirmed to lie in the kinetochore regions of each chromosome. In interphase nuclei, the antigenic foci were usually associated either with the inner surfaces of the nuclear envelope or with the nucleoli. These observations indicate that the centromere regions of the chromosomes in interphase are not randomly distributed within the nucleus but are usually fixed either to the inner surface of the nuclear envelope or to nucleoli.  相似文献   

10.
Human anti-centromere sera from scleroderma patients were used to detect centromere antigens of mouse fibroblast cells. An Mr=59000 centromere protein was localized exclusively on mitotic chromosomes. The association of this protein with the mitotic chromosomes proved to be DNase I sensitive. In interphase nuclei, this centromere antigen was not detectable by immunoblot techniques. The results suggest that the Mr=59000 mitosis specific protein may be necessary for the structural stability of kinetochores during mitosis.  相似文献   

11.
G2/M somatic nuclei were introduced into enucleated meiotically competent oocytes and subsequently cultured in TCM199 plus 10% fetal calf serum (FCS). Pseudo-first polar bodies could be extruded, but the chromosomes failed to arrange normally. Kinetochores were traced with immunofluorescent microscopy using autoimmune sera from patients with CREST (Calcinosis, Raynaud's phenomenon, Esophageal dysmotility, Sclerodactyly, Telangiectasia) scleroderma. In vitro matured oocytes arrested at second meiotic metaphase and kinetochores were detectable as paired structures aligned at the spindle equator. At meiotic anaphase, present or past the kinetochores separated and remained aligned at the distal sides of the chromosomes until telophase, when their alignment perpendicular to the spindle axis was lost. Kinetochores failed to arrange normally after transferring somatic nuclei into oocytes. Our results suggest that somatic cell nuclei are unable to proceed normally through meiosis when introduced into oocyte meiotic cytoplasm.  相似文献   

12.
Properties of human anticentromere autoantibodies were analyzed. In intact cells or isolated cell fractions, these sera stain the centromeres of mitotic chromosomes and discrete speckles (prekinetochores) in nuclei. Staining is also retained in matrix preparations from nuclei or chromosomes. Immunoprecipitation or immunoblotting demonstrates protein antigens of 14, 20, 23, and 34 kd in HeLa nuclei and chromosomes; immunoprecipitates of nuclei also contain a protein of 15.5 kd. Matrix preparations contain only the 20, 23, and 34 kd species. Absorption of the anticentromere serum with any one of the four nuclear antigens immobilized on nitrocellulose is sufficient to eliminate centromere staining. Using a lysed cell model for microtubule nucleation, anticentromere sera are shown to inhibit specifically the organization of microtubules at the kinetochore.  相似文献   

13.
The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecular masses 18 and 80 kD are consistently identified by Western blotting of proteins of isolated chromosomes using CREST sera. In this paper, the possible roles that these two proteins play in the interaction of metaphase chromosomes with tubulin and microtubules are examined using two different procedures. In one set of experiments. Chinese hamster ovary (CHO) chromosomes were extracted with 1-2 M NaCl before incubating with phosphocellulose-purified tubulin under in vitro microtubule assembly conditions. After this treatment, the kinetochores of the residual chromosome scaffolds can still initiate the in vitro assembly of microtubules. Immunoblots of the chromosome scaffold proteins demonstrate that the 18-kD protein has been solubilized by the 1-2 M NaCl extraction, suggesting that this protein is not essential for microtubule assembly at the kinetochore. In a second approach, tubulin was covalently cross-linked to kinetochores of CHO chromosomes using the reversible cross-linking reagent dithiobis (succinimidyl propionate). After DNase I digestion, the chromosomes were solubilized and subjected to anti-tubulin affinity chromatography. Tubulin-kinetochore protein complexes were specifically eluted and analyzed by PAGE and immunoblotting with scleroderma CREST serum. Only a small number of proteins were eluted from the antitubulin affinity column as shown by Coomassie Blue-stained gels. In addition to tubulin, an 80-kD polypeptide, bands at 110 and 24 kD, as well as a faint band at 54 kD, can be resolved. Several minor bands can also be seen in silver-stained gels. The 80-kD protein band from whole metaphase chromosomes reacted with scleroderma CREST serum by immunoblotting and therefore probably represents the major centromere antigen CENP-B. This report provides evidence for a specific protein complex on metaphase chromosomes that is contiguous with kinetochore-bound tubulin and may be involved in microtubule-kinetochore interactions during mitosis.  相似文献   

14.
Long-term cultures of certain rat and mouse cell lines carry several dicentric and some multicentric chromosomes. Using antikinetochore antibodies obtainable from serum of scleroderma (var. CREST) patients we studied the number of kinetochores formed along the length of these chromosomes. The rat cells displayed as many kinetochores as there were centromeres. However, mouse cells showed the synthesis of only one kinetochore in dicentric and multicentric chromosomes which had been in the culture for a period of 1 year or more. When translocations were induced by bleomycin in mouse L cells, the newly formed dicentric chromosomes showed the formation of two kinetochores. It is not known when the accessory centromeres lose their capacity to assemble kinetochore proteins. Possibly, in the rat the latent kinetochores lack a specific component which renders them ineffective for microtubule binding. The reason for the formation of only one kinetochore in mouse multicentric chromosomes is not clear. It may be due to the accumulation of mutations, modification of the kinetochore protein so that it lacks the antibody binding component, or a more effective regulatory gene than in the rat.  相似文献   

15.
The interaction between centrosomes and kinetochores was studied in multinucleate cells induced by Colcemid treatment or by random cell fusion. Except for prematurely condensed chromosomes (PCC) of the G2-phase, PCCs do not develop their own spindle area. Perhaps the maturation promoting factor (MPF) fails to activate these centrosomes. In such PCCs, the kinetochore-centrosome interaction was found to be non-specific: sometimes only a few chromosomes of a group could establish connections with centrosomes, sometimes chromosomes from the same PCC group developed microtubule (MT) attachment with different centrosomes (not the pair), and sometimes kinetochores of PCC groups failed to interact with MTs. These findings explain the abnormal mitotic behaviour of PCCs as seen in the light microscope. These PCCs develop micronuclei or normal nuclei by nuclear re-formation in telophase. All the different PCC groups revealed kinetochores with kinetochore plates. It was shown that transformation of presumptive kinetochores to a trilaminar kinetochore does not depend on nuclear envelope breakdown or on the degree of chromosome condensation. This may be induced by the MPF which may initiate different events like chromosome condensation, nuclear envelope breakdown and kinetochore transformation by secondary factors. Other observations like establishment of connections by different chromosome groups to a common centrosome, kinetochore attachment of PCCs to different centrosomes, interaction of one kinetochore with two centrosomes, kinetochores being stretched and bent to receive microtubules and finally the failure of some kinetochores to develop MT attachment, all strongly suggest that the kinetochores serve as the point of termination rather than the nucleation sites of kinetochore MTs.  相似文献   

16.
We have studied the distribution of myosin molecules in human cells using myosin-specific antibody coupled with fluorescent dyes. Rabbits were immunized with platelet myosin or myosin rod. They produced antisera which precipitated only myosin among all the components in crude platelet extracts. From these antisera we isolated immunoglobulin-G (IgG) and conjugated it with tetramethylrhodamine or fluorescein. We separated IgG with 2-5 fluorochromes per molecule from both under- and over-conjugated IgG by ion exchange chromatography and used it to stain acetone-treated cells. The following controls established the specificity of the staining patterns: (a) staining with labeled preimmune IgG; (b) staining with labeled immune IgG adsorbed with purified myosin; (c) staining with labeled immune IgG mixed with either unlabeled preimmune or immune serum; and (d) staining with labeled antibody purified by affinity chromatography. In blood smears, only the cytoplasm of platelets and leukocytes stained. In spread Enson and HeLa cells, stress fibers stained strongly in closely spaced 0.5 mum spots. The cytoplasm stained uniformly in those cells presumed to be motile before acetone treatment. In dividing HeLa cells there was a high concentration of myosin-specific staining in the vicinity of the contractole ring and in the mitotic spindle, especially the region between the chromosomes and the poles. We detected no staining of erythrocytes, or nuclei of leukocytes and cultured cells, or the surface of platelets and cultured cells.  相似文献   

17.
Tyrosine phosphorylation has emerged as a mechanism to control cellular events in the nucleus. The c-Fes protein-tyrosine kinase is an important regulator of cell growth and differentiation in several cell types, and is found in the nucleus of hematopoietic cells. In this study, we showed nuclear localization of c-Fes in both hematopoietic (K562, TF-1, HEL, U937, and HL-60) and nonhematopoietic cell lines (293T, CaOv3, TfxH, MG-63, HeLa, DU-145) by immunofluorescence and confocal microscopy. c-Fes showed striking changes in subcellular localization at specific stages of mitosis. In interphase cells, the intranuclear distribution of c-Fes was diffuse with occasional bright foci. Some c-Fes was present in the cytosol after breakdown of the nuclear membrane, in prometaphase. At prometaphase and metaphase c-Fes was also associated with the chromosomes, in a punctate pattern that partially overlapped with the centromere. Further comparison with proteins that are known components of the kinetochore suggested that some c-Fes protein was located at the centromeric alpha-satellite DNA, between the kinetochores. At anaphase and telophase, c-Fes was entirely cytoplasmic and no protein was found associated with the chromosomes. The timing of c-Fes' appearance at the centromere coincides with the period of kinetochore assembly. These data suggest that c-Fes is recruited to the kinetochore during mitosis.  相似文献   

18.
MPFInductionofMicrotubuleAssemblyatInterphaseKinetochoreofCHOCellsFENGMei;(冯梅)ZHANGHuan-xiang;(张焕相)WANGYong-chao;(王永潮)WANGYue...  相似文献   

19.
Summary Treatment of human and mouse cell cultures with the cytidine analogue 5-azadeoxycytidine and the AT-specific DNA ligand Hoechst 33258 dramatically inhibited condensation of the pericentromeric heterochromatin in several chromosomes. When stained with antikinetochore autoimmune sera, these experimentally undercondensed chromosomes showed kinetochores with preserved antigenicity. The undercondensed and normally condensed chromosomes share the major antigenic determinants of the kinetochore.  相似文献   

20.
Because of their importance as target antigens in scleroderma and since all other major autoantigens in scleroderma can be localized to the interphase nucleolus, we were interested in a further investigation of the potential relationship between interphase centromeres and the nucleolus. Using human anticentromere autoantibodies (ACA) from patients with the CREST form of scleroderma as probes in indirect immunofluorescence microscopy, we observed nonrandom interphase "clumping" of centromeres in a distribution suggestive of nucleoli. By double-label immunofluorescence comparing the localization of centromeres to nucleolar proteins Ki-67, fibrillarin, or protein B23 (nucleophosmin), interphase centromeres appeared to be localized around and within nucleoli. A number of different ACA sera were tested on HEp-2, HeLa, PtK2, Indian muntjac, 3T3, and NRK cells, all with identical results indicating colocalization between centromeres and nucleoli. Immunoelectron microscopy revealed that interphase centromeres were distributed free in the nucleoplasm, in contact with the nuclear envelope, in contact with and on the periphery of nucleoli, and totally embedded within the confines of the nucleolus itself. Interestingly, actinomycin D treatment dissociated centromeres from localization within the segregated nucleolus. To determine if interphase centromeres were integral components of nucleoli, nucleoli were isolated according to classical methods. By double-label immunofluorescence, immunoelectron microscopy, and Western blotting, it was demonstrated that centromere autoantigens copurified with isolated nucleoli. These studies offer proof that some interphase centromeres can be associated with, and may even be considered part of, the interphase nucleolus. Furthermore, all of the major autoantigens in scleroderma can now be localized to the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号