首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high resolution 2-D protein gel electrophoresis technique combined with MALDI-TOF MS and a recently developed fluorescence-based thiol modification assay were used to investigate the cellular response of Staphylococcus aureus to oxidative stress. Addition of hydrogen peroxide, diamide, and the superoxide generating agent paraquat to exponentially growing cells revealed complex changes in the protein expression pattern. In particular, proteins involved in detoxification, repair systems, and intermediary metabolism were found to be up-regulated. Interestingly, there is only a small overlap of proteins induced by all these stressors. Exposure to hydrogen peroxide mediated a significant increase of DNA repair enzymes, whereas treatment with diamide affected proteins involved in protein repair and degradation. The activity of proteins under oxidative stress conditions can be modulated by oxidation of thiol groups. In growing cells, protein thiols were found to be mainly present in the reduced state. Diamide mediated a strong increase of reversibly oxidized thiols in a variety of metabolic enzymes. By contrast, hydrogen peroxide resulted in the reversible oxidation especially of proteins with active site cysteines. Moreover, high levels of hydrogen peroxide influenced the pI of three proteins containing cysteines within their active sites (GapA1, AhpC, and HchA) indicating the generation of sulfinic or sulfonic acid by irreversible oxidation of thiols.  相似文献   

2.
Protein thiol modifications visualized in vivo   总被引:5,自引:2,他引:3       下载免费PDF全文
Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H2O2-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H2O2 and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.  相似文献   

3.
4.
Proteomics data have suggested ascorbate peroxidase (APX) to be a potential thioredoxin-interacting protein. Using recombinant enzymes, we observed that incubation of pea cytosolic APX with reduced poplar thioredoxins h drastically inactivated the peroxidase. A similar inactivation is induced by reduced glutathione and dithiothreitol, whereas diamide and oxidized glutathione have no effect. Oxygen consumption measurements, modifications of the APX visible spectrum and protection by hydrogen peroxide scavenging enzymes suggest that APX oxidizes thiols leading to the generation of thiyl radicals. These radicals can in turn react with thiyl anions to produce the disulfide radical anions, which are responsible for oxygen reduction and subsequent hydrogen peroxide production. The APX inactivation is not due solely to hydrogen peroxide since fluorimetry indicates that the environment of the APX tryptophan residues is dramatically modified only in the presence of thiol groups. The physiological implications of this interaction are discussed.  相似文献   

5.
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.  相似文献   

6.
In nature, Escherichia coli are exposed to harsh and non-ideal growth environments—nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE). We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG) at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert and Jakob presented in the accompanying paper (Leichert and Jakob 2004), which provide evidence that MetE is one of the proteins in E. coli most susceptible to oxidation. In eukaryotes, glutathionylation of key proteins involved in protein synthesis leads to inhibition of translation. Our studies suggest a simpler mechanism is employed by E. coli to achieve the same effect.  相似文献   

7.
S-Thiolation is crucial for protection and regulation of thiol-containing proteins during oxidative stress and is frequently achieved by the formation of mixed disulfides with glutathione. However, many Gram-positive bacteria including Bacillus subtilis lack the low molecular weight (LMW) thiol glutathione. Here we provide evidence that S-thiolation by the LMW thiol cysteine represents a general mechanism in B. subtilis. In vivo labeling of proteins with [(35)S]cysteine and nonreducing two-dimensional PAGE analyses revealed that a large subset of proteins previously identified as having redox-sensitive thiols are modified by cysteine in response to treatment with the thiol-specific oxidant diamide. By means of multidimensional shotgun proteomics, the sites of S-cysteinylation for six proteins could be identified, three of which are known to be S-glutathionylated in other organisms.  相似文献   

8.
An efficient oxidative stress response (OSR) is important for the facultative pathogenic yeast Candida albicans to survive within the human host. We used a large scale 2-D protein gel electrophoresis approach to analyze the stress response mechanisms of C. albicans after treatment with hydrogen peroxide and the thiol oxidizing agent, diamide. Quantitation of in vivo protein synthesis after pulse labeling of the proteins with radioactive L-[35S]-methionine resulted in characteristic proteome signatures for hydrogen peroxide and diamide with significant overlap of 21 up-regulated proteins for both stressors. Among the induced proteins were enzymes with known antioxidant functions like catalase or thioredoxin reductase and a set of oxidoreductases. 2-D gel analysis of mutants in the CAP1 gene revealed that the synthesis of 12 proteins is controlled by the oxidative stress regulator Cap1p. Stressing its importance for the C. albicans OSR, all 12 proteins were also induced after oxidative challenge by hydrogen peroxide or diamide.  相似文献   

9.
1. Thiol oxidation by a lipid peroxide or hydrogen peroxide was as efficient in denatured non-haem proteins as in small thiols. Both peroxides were relatively ineffective in oxidizing haemoprotein thiols, especially at low pH. Increased amounts of haematin decreased greatly the efficiency of GSH oxidation by peroxides especially at low pH. 2. Other than the haematin ring, the thiol group was found to be probably the group in proteins most sensitive to modification by peroxides. 3. At low concentrations, the fatty acid moiety of a lipid peroxide appeared to impede thiol oxidation in proteins, probably by hydrophobic bonding to the protein, rather than to stimulate thiol oxidation by denaturing the protein and thereby increasing the exposure and reactivity of the thiol group. 4. The relative rates of thiol oxidation by peroxides in the different thiols were: haemoprotein thiols>small thiols>other protein thiols. In all cases, thiol oxidation was much more rapid by the lipid peroxide than by hydrogen peroxide.  相似文献   

10.
Only a single superoxide dismutase (SodA) was detected in Bacillus subtilis, and growing cells of a sodA mutant exhibited paraquat sensitivity as well as a growth defect and reduced survival at an elevated temperature. However, the sodA mutation had no effect on the heat or hydrogen peroxide resistance of wild-type spores or spores lacking the two major DNA protective alpha/beta-type small, acid-soluble, spore proteins (termed alpha(-)beta(-) spores). Spores also had only a single catalase (KatX), as the two catalases found in growing cells (KatA and KatB) were absent. While a katA mutation greatly decreased the hydrogen peroxide resistance of growing cells, as found previously, katA, katB, and katX mutations had no effect on the heat or hydrogen peroxide resistance of wild-type or alpha(-)beta(-) spores. Inactivation of the mrgA gene, which codes for a DNA-binding protein that can protect growing cells against hydrogen peroxide, also had no effect on spore hydrogen peroxide resistance. Inactivation of genes coding for alkyl hydroperoxide reductase, which has been shown to decrease growing cell resistance to alkyl hydroperoxides, had no effect on spore resistance to such compounds or on spore resistance to heat and hydrogen peroxide. However, Western blot analysis showed that at least one alkyl hydroperoxide reductase subunit was present in spores. Together these results indicate that proteins that play a role in the resistance of growing cells to oxidizing agents play no role in spore resistance. A likely reason for this lack of a protective role for spore enzymes is the inactivity of enzymes within the dormant spore.  相似文献   

11.
Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases.  相似文献   

12.
We provide in this paper a comparative biochemical and structural analysis of the major thiol oxidoreductases (thioredoxin and glutaredoxin) of photosynthetic organisms in relation with their reductases and with target proteins, especially those involved either in the detoxication of peroxides such as hydrogen peroxide (thiol-peroxidases) or in the repair of oxidized methionines in proteins (methionine sulfoxide reductases). Particular emphasis will be given to the catalytic and regeneration mechanisms used by these enzymes. In addition, the protein-protein interactions of these systems will be discussed, leading to an integrated view of the functioning of these systems in various plant sub-cellular compartments.  相似文献   

13.
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here, we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage.  相似文献   

14.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

15.
In Escherichia coli, two enzymes catalyze the synthesis of methionine from homocysteine using methyltetrahydrofolate as the donor of the required methyl group: cobalamin-dependent and cobalamin-independent methionine synthases. Comparison of the mechanisms of these two enzymes offers the opportunity to examine two different solutions to the same chemical problem. We initiated the research described here to determine whether the two enzymes were evolutionarily related by comparing the deduced amino acid sequences of the two proteins. We have determined the nucleotide sequence for the metE gene, encoding the cobalamin-independent methionine synthase. Our results reveal an absence of similarity between the deduced amino acid sequences of the cobalamin-dependent and cobalamin-independent proteins and suggest that the two have arisen by convergent evolution. We have developed a rapid one-step purification of the recombinant cobalamin-independent methionine synthase (MetE) that yields homogeneous protein in high yield for mechanistic and structural studies. In the course of these studies, we identified a highly reactive thiol in MetE that is alkylated by chloromethyl ketones and by iodoacetamide. We demonstrated that alkylation of this residue, shown to be cysteine 726, results in complete loss of activity. While we are unable to deduce the role of cysteine 726 in catalysis at this time, the identification of this reactive residue suggests the possibility that this thiol functions as an intermediate methyl acceptor in catalysis, analogous to the role of cobalamin in the reaction catalyzed by the cobalamin-dependent enzyme.  相似文献   

16.
The proteomics analysis reported here shows that a major cellular response to oxidative stress is the modification of several peroxiredoxins. An acidic form of the peroxiredoxins appeared to be systematically increased under oxidative stress conditions. Peroxiredoxins are enzymes catalyzing the destruction of peroxides. In doing so, a reactive cysteine in the peroxiredoxin active site is weakly oxidized (disulfide or sulfenic acid) by the destroyed peroxides. Cellular thiols (e.g. thioredoxin) are used to regenerate the peroxiredoxins to their active state. Tandem mass spectrometry was carried out to characterize the modified form of the protein produced in vivo by oxidative stress. The cysteine present in the active site was shown to be oxidized into cysteic acid, leading to an inactivated form of peroxiredoxin. This strongly suggested that peroxiredoxins behave as a dam upon oxidative stress, being both important peroxide-destroying enzymes and peroxide targets. Results obtained in a primary culture of Leydig cells challenged with tumor necrosis factor alpha suggested that this oxidized/native balance of peroxiredoxin 2 may play an active role in resistance or susceptibility to tumor necrosis factor alpha-induced apoptosis.  相似文献   

17.
The nonpathogenic Bacillus subtilis and the pathogen Staphylococcus aureus are gram-positive model organisms that have to cope with the radical nitric oxide (NO) generated by nitrite reductases of denitrifying bacteria and by the inducible NO synthases of immune cells of the host, respectively. The response of both microorganisms to NO was analyzed by using a two-dimensional gel approach. Metabolic labeling of the proteins revealed major changes in the synthesis pattern of cytosolic proteins after the addition of the NO donor MAHMA NONOate. Whereas B. subtilis induced several oxidative stress-responsive regulons controlled by Fur, PerR, OhrR, and Spx, as well as the general stress response controlled by the alternative sigma factor SigB, the more resistant S. aureus showed an increased synthesis rate of proteins involved in anaerobic metabolism. These data were confirmed by nuclear magnetic resonance analyses indicating that NO causes a drastically higher increase in the formation of lactate and butanediol in S. aureus than in B. subtilis. Monitoring the intracellular protein thiol state, we observed no increase in reversible or irreversible protein thiol modifications after NO stress in either organism. Obviously, NO itself does not cause general protein thiol oxidations. In contrast, exposure of cells to NO prior to peroxide stress diminished the irreversible thiol oxidation caused by hydrogen peroxide.  相似文献   

18.
Cobalamin-independent methionine synthase (MetE) catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to l-homocysteine to form methionine. Previous studies have shown that the MetE active site coordinates a zinc atom, which is thought to act as a Lewis acid and plays a role in the activation of thiol. Extended X-ray absorption fine structure studies and mutagenesis experiments identified the zinc-binding site in MetE from Escherichia coli. Further structural investigations of MetE from Thermotoga maritima lead to the proposition of two models: “induced fit” and “dynamic equilibrium”, to account for the catalytic mechanisms of MetE. Here, we present crystal structures of oxidized and zinc-replete MetE from Streptococcus mutans at the physiological pH. The structures reveal that zinc is mobile in the active center and has the possibility to invert even in the absence of homocysteine. These structures provide evidence for the dynamic equilibrium model.  相似文献   

19.
Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells.  相似文献   

20.
The oxidized protein repair methionine sulfoxide reductase (Msr) system has been implicated in aging, in longevity, and in the protection against oxidative stress. This system is made of two different enzymes (MsrA and MsrB) that catalyze the reduction of the two diastereoisomers S- and R-methionine sulfoxide back to methionine within proteins, respectively. Due to its role in cellular protection against oxidative stress that is believed to originate from its reactive oxygen species scavenging ability in combination with exposed methionine at the surface of proteins, the susceptibility of MsrA to hydrogen-peroxide-mediated oxidative inactivation has been analyzed. This study is particularly relevant to the oxidized protein repair function of MsrA in both fighting against oxidized protein formation and being exposed to oxidative stress situations. The enzymatic properties of MsrA indeed rely on the activation of the catalytic cysteine to the thiolate anion form that is potentially susceptible to oxidation by hydrogen peroxide. The residual activity and the redox status of the catalytic cysteine were monitored before and after treatment. These experiments showed that the enzyme is only inactivated by high doses of hydrogen peroxide. Although no significant structural modification was detected by near- and far-UV circular dichroism, the conformational stability of oxidized MsrA was decreased as compared to that of native MsrA, making it more prone to degradation by the 20S proteasome. Decreased conformational stability of oxidized MsrA may therefore be considered as a key factor for determining its increased susceptibility to degradation by the proteasome, hence avoiding its intracellular accumulation upon oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号