共查询到20条相似文献,搜索用时 0 毫秒
1.
The following three issues concerning the backbone dihedral angles of protein structures are presented. (1) How do the dihedral angles of the 20 amino acids depend on the identity and conformation of their nearest residues? (2) To what extent are the native dihedral angles determined by local (dihedral) potentials? (3) How to build a knowledge-based potential for a residue's dihedral angles, considering the identity and conformation of its nearest residues? We find that the dihedral angle distribution for a residue can significantly depend on the identity and conformation of its adjacent residues. These correlations are in sharp contrast to the Flory isolated-pair hypothesis. Statistical potentials are built for all combinations of residue triplets and depend on the dihedral angles between consecutive residues. First, a low-resolution potential is obtained, which only differentiates between the main populated basins in the dihedral angle density plots. Minimization of the dihedral potential for 125 test proteins reveals that most native alpha-helical residues (89%) and a large fraction of native beta-sheet residues (47%) adopt conformations close to their native one. For native loop residues, the percentage is 48%. It is also found that this fraction is higher for residues away from the ends of alpha or beta secondary structure elements. In addition, a higher resolution potential is built as a function of dihedral angles by a smoothing procedure and continuous functions interpolations. Monte Carlo energy minimization with this potential results in a lower fraction for native beta-sheet residues. Nevertheless, because of the higher flexibility and entropy of beta structures, they could be preferred under the influence of non-local interactions. In general, most alpha-helices and many beta-sheets are strongly determined by the local potential, while the conformations in loops and near the end of beta-sheets are more influenced by non-local interactions. 相似文献
2.
To estimate how extensively the ensemble of denatured-state conformations is constrained by local side-chain–backbone interactions, propensities of each of the 20 amino acids to occur in mono- and dipeptides mapped to discrete regions of the Ramachandran map are computed from proteins of known structure. In addition, propensities are computed for the trans, gauche−, and gauche+ rotamers, with or without consideration of the values of phi and psi. These propensities are used in scoring functions for fragment threading, which estimates the energetic favorability of fragments of protein sequence to adopt the native conformation as opposed to hundreds of thousands of incorrect conformations. As finer subdivisions of the Ramachandran plot, neighboring residue phi/psi angles, and rotamers are incorporated, scoring functions become better at ranking the native conformation as the most favorable. With the best composite propensity function, the native structure can be distinguished from 300,000 incorrect structures for 71% of the 2130 arbitrary protein segments of length 40, 48% of 2247 segments of length 30, and 20% of 2368 segments of length 20. A majority of fragments of length 30–40 are estimated to be folded into the native conformation a substantial fraction of the time. These data suggest that the variations observed in amino acid frequencies in different phi/psi/chi1 environments in folded proteins reflect energetically important local side-chain–backbone interactions, interactions that may severely restrict the ensemble of conformations populated in the denatured state to a relatively small subset with nativelike structure. 相似文献
3.
The frequencies of occurrence of atom arrangements in high-resolution protein structures provide some of the most accurate quantitative measures of interaction energies in proteins. In this report we extend our development of a consistent set of statistical potentials for quantifying local interactions between side-chains and the polypeptide backbone, as well as nearby side-chains. Starting with phi/psi/chi1 propensities that select for optimal interactions of the 20 amino acid side-chains with the 2 flanking peptide bonds, the following 3 new terms are added: (1) a distance-dependent interaction between the side-chain at i and the carbonyl oxygens and amide protons of the peptide units at i +/- 2, i +/- 3, and i +/- 4; (2) a distance-dependent interaction between the side-chain at position i and side-chains at positions i + 1 through i + 4; and (3) an orientation-dependent interaction between the side-chain at position i and side-chains at i + 1 through i + 4. The relative strengths of these 4 pseudo free energy terms are estimated by the average information content of each scoring matrix and by assessing their performance in a simple fragment threading test. They vary from -0.4 - -0.5 kcal/mole per residue for phi/psi/chi1 propensities to a range of -0.15 - -0.6 kcal/mole per residue for each of the other 3 terms. The combined energy function, containing no interactions between atoms more than 4 residues apart, identifies the correct structural fragment for randomly selected 15 mers over 40% of the time, after searching through 232,000 alternative conformations. For 14 out of 20 sets of all-atom Rosetta decoys analyzed, the native structure has a combined score lower than any of the 1700-1900 decoy conformations. The ability of this energy function to detect energetically important details of local structure is demonstrated by its power to distinguish high-resolution crystal structures from NMR solution structures. 相似文献
4.
Pokarowski P Kloczkowski A Jernigan RL Kothari NS Pokarowska M Kolinski A 《Proteins》2005,59(1):49-57
We have analyzed 29 different published matrices of protein pairwise contact potentials (CPs) between amino acids derived from different sets of proteins, either crystallographic structures taken from the Protein Data Bank (PDB) or computer-generated decoys. Each of the CPs is similar to 1 of the 2 matrices derived in the work of Miyazawa and Jernigan (Proteins 1999;34:49-68). The CP matrices of the first class can be approximated with a correlation of order 0.9 by the formula e(ij) = h(i) + h(j), 1 相似文献
5.
M. J. Sutcliffe 《Protein science : a publication of the Protein Society》1993,2(6):936-944
The usefulness of representing an ensemble of NMR-derived protein structures by a single structure has been investigated. Two stereochemical properties have been used to assess how a single structure relates to the ensemble from which it was derived, namely the distribution of phi psi torsion angles and the distribution of chi 1 torsion angles. The results show that the minimized average structure derived from the ensemble (a total of 11 ensembles from the Brookhaven Protein Data Bank were analyzed) does not always correspond well with this ensemble, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue. An alternative method that selects the member of the ensemble which is closest to the \"average\" of the ensemble has been investigated (a total of 23 ensembles from the Brookhaven Protein Data Bank were analyzed). Although this method selected a structure that on the whole corresponded more closely to the ensemble than did the minimized average structure, this is still not a totally reliable means of selecting a single structure to represent the ensemble. This suggests that it is advisable to study the ensemble as a whole. A study has also been made of the practice of selecting the \"best\" rather than the most representative member of the ensemble. This too suggests that the ensemble should be studied as a whole. A study of the conformational space occupied by the ensemble also suggests the need to consider the ensemble as a whole, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue. 相似文献
6.
Stereochemical quality of protein structure coordinates. 总被引:49,自引:0,他引:49
Methods have been developed to assess the stereochemical quality of any protein structure both globally and locally using various criteria. Several parameters can be derived from the coordinates of a given structure. Global parameters include the distribution of phi, psi and chi 1 torsion angles, and hydrogen bond energies. There are clear correlations between these parameters and resolution; as the resolution improves, the distribution of the parameters becomes more clustered. These features show a broad distribution about ideal values derived from high-resolution structures. Some structures have tightly clustered distributions even at relatively low resolutions, while others show abnormal scatter though the data go to high resolution. Additional indicators of local irregularity include proline phi angles, peptide bond planarities, disulfide bond lengths, and their chi 3 torsion angles. These stereochemical parameters have been used to generate measures of stereochemical quality which provide a simple guide as to the reliability of a structure, in addition to the most important measures, resolution and R-factor. The parameters used in this evaluation are not novel, and are easily calculated from structure coordinates. A program suite is currently being developed which will quickly check a given structure, highlighting unusual stereochemistry and possible errors. 相似文献
7.
A computational study of the five soybean beta-amylase X-ray structure reported so far revealed a peculiar conformational transition after substrate (or inhibitor) binding, which affects a segment of the beta-strand 6 (residues 341-343) in the (beta/alpha)8 molecular scaffold. Backbone distortions that involve considerable changes in the phi and psi angles were observed, as well as two sharp rotamer transitions for the Thr342 and Cys343 side chains. These changes caused the outermost CA-layer (at the C-terminal side of the barrel), which is involved in the catalysis, to shrink. Our observations strongly suggest that the 341FTC343 residue conformations in the free enzyme are not optimal for protein stability. Furthermore, as a result of conformational transitions in the ligand-binding process, there is a negative enthalpy change for these residues (-27 and -34 kcal/mol, after substrate or inhibitor binding, respectively). These findings support the proposed \"stability-function\" hypothesis for proteins that recognize a ligand (Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452-456). They are also in good agreement with other experimental results in the literature that describe the role of the 341-343 segment in beta-amylase activity. Site-directed mutagenesis focused on these residues could be useful for undertaking functional studies of beta-amylase. 相似文献
8.
9.
Drug resistance in HIV-1 protease can also occasionally confer a change in the substrate specificity. Through the use of computational techniques, a relationship can be determined between the substrate sequence and three-dimensional structure of HIV-1 protease, and be utilized to predict substrate specificity. In this study, we introduce a biased sequence search threading (BSST) methodology to analyze the preferences of substrate positions and correlations between them that might also identify which positions within known substrates can likely tolerate sequence variability and which cannot. The potential sequence space was efficiently explored using a low-resolution knowledge-based scoring function. The low-energy substrate sequences generated by the biased search are correlated with the natural substrates. Octameric sequences were predicted using the probabilities of residue positions in the sequences generated by BSST in three ways: considering each position in the substrate independently, considering pairwise interdependency, and considering triple-wise interdependency. The prediction of octameric sequences using the triple-wise conditional probabilities produces the most accurate results, reproducing most of the sequences for five of the nine natural substrates and implying that there is a complex interdependence between the different substrate residue positions. This likely reflects that HIV-1 protease recognizes the overall shape of the substrate more than its specific sequence. 相似文献
10.
Statistical averages and correlations for backbone torsion angles of chymotrypsin inhibitor 2 are calculated by using the Rotational Isomeric States model of chain statistics. Statistical weights of torsional states of phipsi pairs, needed for the statistics of the full chain, are obtained in two different ways: 1) by using knowledge-based pairwise dependent phipsi energy maps from Protein Data Bank (PDB) and 2) by collecting torsion angle data from a large number of random coil configurations of an all-atom protein model with volume exclusion. Results obtained by using PDB data show strong correlations between adjacent torsion angle pairs belonging to both the same and different residues. These correlations favor the choice of the native-state torsion angles, and they are strongly context dependent, determined by the specific amino acid sequence of the protein. Excluded volume or steric clashes, only, do not introduce context-dependent phipsi correlations into the chain that would affect the choice of native-state torsional angles. 相似文献
11.
Evandro Ferrada Francisco Melo 《Protein science : a publication of the Protein Society》2009,18(7):1469-1485
Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions. 相似文献
12.
Shimada J Ishchenko AV Shakhnovich EI 《Protein science : a publication of the Protein Society》2000,9(4):765-775
We propose a self-consistent approach to analyze knowledge-based atom-atom potentials used to calculate protein-ligand binding energies. Ligands complexed to actual protein structures were first built using the SMoG growth procedure (DeWitte & Shakhnovich, 1996) with a chosen input potential. These model protein-ligand complexes were used to construct databases from which knowledge-based protein-ligand potentials were derived. We then tested several different modifications to such potentials and evaluated their performance on their ability to reconstruct the input potential using the statistical information available from a database composed of model complexes. Our data indicate that the most significant improvement resulted from properly accounting for the following key issues when estimating the reference state: (1) the presence of significant nonenergetic effects that influence the contact frequencies and (2) the presence of correlations in contact patterns due to chemical structure. The most successful procedure was applied to derive an atom-atom potential for real protein-ligand complexes. Despite the simplicity of the model (pairwise contact potential with a single interaction distance), the derived binding free energies showed a statistically significant correlation (approximately 0.65) with experimental binding scores for a diverse set of complexes. 相似文献
13.
Kameda T 《Proteins》2003,53(3):616-628
Recent experimental and theoretical studies suggest that rates and pathways of protein folding are largely decided by topology of the native structures, at least for small proteins. However, some exceptions are known; for example, protein L and protein G have the same topology, but exhibit different characteristics of the TSE. Thus, folding pathways of some proteins are critically affected by detailed information on amino acid sequences. To investigate the sequence specificity, we calculate folding pathways of 20 small proteins using the perturbed Gaussian chain model developed by Portman et al. (Phys Rev Lett 1998;81:5237-5240; J Chem Phys 2001;114:5069-5081). Characteristics of the TSE predicted by the model are in good agreement with experimental phi-value data for many proteins at coarse-grained level. Especially, estimation of folding TSE for protein G and protein L based on both topology and additional sequence information are consistent with experimental phi-value data. With only topology information, however, the model predicts the TSE of protein G incorrectly. Moreover, the model that uses topology and sequence information describes free energy profiles of two-state and three-state folders consistently with experiment, whereas the topology only model predicts free energy profiles of some proteins incorrectly. This indicates that sequence specificity also has critical roles in determining the folding pathways for some proteins. 相似文献
14.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide. 相似文献
15.
Jan Zacharias Ernst Walter Knapp 《Protein science : a publication of the Protein Society》2013,22(11):1669-1674
We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (ϕ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains—the latter can yield a better separation of different local secondary structure motives—and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. 相似文献
16.
17.
18.
《Proteins》2018,86(5):581-591
We compare side chain prediction and packing of core and non‐core regions of soluble proteins, protein‐protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high‐resolution crystal structures of these 3 protein classes. We show that the solvent‐inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein‐protein interfaces and in the membrane‐exposed regions of transmembrane proteins can be predicted by the hard‐sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent‐inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within ) up to a relative solvent accessibility, , for all 3 protein classes. Our results show that % of the interface regions in protein complexes are “core”, that is, densely packed with side chain conformations that can be accurately predicted using the hard‐sphere model. We propose packing fraction as a metric that can be used to distinguish real protein‐protein interactions from designed, non‐binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. 相似文献
19.
20.
Changes in amino acid side chains have long been recognized to alterthe range and distribution of ?, ψ angles found in the main chain of polypeptides. Altering the range and distribution of ?, ψ angles also alters the conformational entropy of the flexible denatured state and may thus stabilize or destabilize it relative to the comparatively conformationally rigid native state. A database of 12,320 residues from 61 nonhomologous, high resolution crystal structures was examined to determine the ?, ψ conformational preferences of each of the 20 amino acids. These observed distributions in the native state of proteins are assumed to also reflect the distributions found in the denatured state. The distributionswere used to approximate the energy surface for each residue, allowing the calculation of relative conformational entropies for each residue relative to glycine. In the most extreme case, replacement of glycine by proline, conformational entropy changes will stabilize the native state relative to the denatured state by ?0.82 ± 0.08 kcal/mol at 20°C. Surprisingly, alanine is found to be the most ordered residue other than proline. This unexpected result is a result of the high percentage of alanines found in helical conformations. This either indicates that the observed distributions in the native state do not reflect the distributions in the denatured state, or that alanine is much more likely to adopt a helical conformation in the denatured state than residues with longer side chains. Among those residues with ?, ψ angles compatible with helix incorporation the percentage of alanines actually in helices is very similar to other residues. This and the consistent ordering of alanine relative to other residues regardless of secondary structure are evidence that ?, ψ distributions in native states reflect those in the denatured states. © 1995 Wiley-Liss, Inc. 相似文献