首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin E2 and prostacyclin (prostaglandin I2) produce hyperalgesia in animals and humans. Because there is evidence that prostaglandins contribute to pain maintained by sympathetic nervous system activity, we evaluated whether sympathetic postganglionic neurons synthesize these hyperalgesic prostaglandins, and whether production of prostaglandins by these neurons can contribute to sensitization of primary afferent nociceptors. Intradermal injection of arachidonic acid but not linoleic acid, in the rat hindpaw, produces a decrease in mechanical nociceptive threshold. This hyperalgesic effect is prevented by indomethacin, an inhibitor of prostaglandin synthesis or by prior surgical removal of the lumbar sympathetic chain. To test the hypothesis that sympathetic postganglionic neurons are the source of prostaglandins, we measured production of prostaglandin E2 and 6-keto-prostaglandin F1 alpha (the stable metabolite of prostacyclin) by homogenates of adult rat sympathetic postganglionic neurons from superior cervical ganglia. These homogenates produced significant amounts of prostaglandin E2 and 6-keto-prostaglandin F1 alpha, and most of this production is eliminated by neonatal administration of 6-hydroxydopamine which selectively destroys sympathetic postganglionic neurons. These results demonstrate that sympathetic postganglionic neurons produce prostaglandins, and supports further the hypothesis that the release of prostaglandins from sympathetic postganglionic neurons contributes to the hyperalgesia associated with sympathetically maintained pain.  相似文献   

2.
The capacity of cultured mesothelial cells to produce prostaglandins from both exogenous an endogenous arachidonic acid has been investigated. Incubations with labelled [1-14C]arachidonic acid and [1-14C]prostaglandin endoperoxide H2 indicated the formation of prostacyclin and prostaglandin E2. Evaluation of the transformation of endogenously released arachidonic acid, however, could only confirm the production of prostacyclin.  相似文献   

3.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclo-oxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2 alpha, prostacyclin and thromboxane A2. Prostaglandins E2 and F2 alpha are the principal cyclo-oxygenase products of this interaction. We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2 alpha by leukocytes.  相似文献   

4.
High-performance liquid chromatography and radioimmunoassay were used to identify the prostaglandins synthesized by mouse embryo palate mesenchyme cells. Serum stimulated the release of several different metabolites of arachidonic acid including 6-ketoprostaglandin F1 alpha (the stable product of prostacyclin, prostaglandin I2), prostaglandin E2 and prostaglandin F2 alpha. Compared to control cells, the serum-stimulated cells produce elevated levels of prostaglandin E2 (36-fold), 6-ketoprostaglandin F1 alpha (15-fold) and prostaglandin F2 alpha (7-fold). The acetylenic analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid prevented this accelerated synthesis.  相似文献   

5.
Both ascorbic acid and the 1-series prostaglandins have been reported to be important regulators of cell growth and since ascorbic acid also increases the synthesis of the 1-series prostaglandins, it is possible that the effects of ascorbic acid on cell growth might be mediated by changes in 1-series prostaglandin synthesis induced by ascorbic acid. This study attempted to examine this possible relationship. The effects of ascorbic acid, prostaglandin E1 and the essential fatty acid precursors of the prostaglandins, linoleic acid and gamma-linolenic acid on the in vitro growth of transformed BL6 murine melanoma cells and untransformed monkey kidney (LLCMK) cells was determined. The effects of ascorbic acid addition on the growth inhibitory effect of the essential fatty acids and on the activity of delta-6-desaturase, a key enzyme in 1-series prostaglandin synthesis were also examined. Addition of ascorbic acid, prostaglandin E1 and both essential fatty acids was found to reduce BL6 growth while PGE1 and to a lesser extent the essential fatty acids reduced LLCMK cell growth. The growth inhibitory effect of the essential fatty acids was enhanced by ascorbic acid which was also found to stimulate delta-6-desaturase activity in BL6 cells. The growth inhibitory effect of ascorbic acid on BL6 cells may thus be mediated by changes in prostaglandin synthesis through an association with the metabolism of the essential fatty acid precursors of the prostaglandins.  相似文献   

6.
1. Prostaglandins A1, B1, E1 and F1 alpha (2-120 micrograms/kg), arachidonic acid and dihomo-gamma-linolenic acid (0.1-2 mg/kg) were injected intravenously into Channa maculata and changes in arterial blood pressure were recorded. 2. Injection of PGF1 alpha had no significant effect on arterial blood pressure. Injection of PGA1 and PGE1 was followed by dose-dependent hypotension whereas injection of PGB1 elicited significant dose-dependent increase in arterial blood pressure. 3. Both dihomo-gamma-linolenic acid and arachidonic acid were also depressor agents but dihomo-gamma-linolenic acid was more potent. 4. A single bolus intravenous injection of indomethacin (5 mg/kg) or 4 daily intraperitoneal injections (4 x 10 mg/kg) significantly lowered arterial blood pressure. One hour after pre-treatment of indomethacin, the vascular effects of both prostaglandin precursors were abolished. 5. It appears that the vascular effects of prostaglandins in Channa maculata are qualitatively different from those reported for mammals.  相似文献   

7.
Human synovial fibroblasts in culture respond to bradykinin with a 20-fold increment in intracellular cyclic AMP concentrations, however bradykinin does not directly activate adenylate cyclase activity in a particulate fraction derived from these cells. Bradykinin evokes a release of labeled arachidonic acid and prostaglandins E and F from synovial fibroblasts pre-labeled with 3H-arachidonic acid. Hydrocortisone inhibits the bradykinin induced increment in cyclic AMP and the release of arachidonic acid and prostaglandins E and F from synovial fibroblasts. Indomethacin, which also inhibits the cyclic AMP response to bradykinin, has no effect on the release of arachidonic acid from synovial fibroblasts. Indomethacin does, however, inhibit the quantity of prostaglandins released into the medium. These studies support the hypothesis that bradykinin does not activate human synovial fibroblast adenylate cyclase, but presumably activates a phospholipase whose products in turn result in the synthesis of prostaglandins. These and other investigations also suggest that a product(s) of the prostaglandin pathway causes the increment in cyclic AMP.  相似文献   

8.
The two cyclooxygenase isoforms, cyclooxygenase-1 and cyclooxygenase-2, both metabolize arachidonic acid to prostaglandin H2, which is subsequently processed by downstream enzymes to the various prostanoids. In the present study, we asked if the two isoforms differ in the profile of prostanoids that ultimately arise from their action on arachidonic acid. Resident peritoneal macrophages contained only cyclooxygenase-1 and synthesized (from either endogenous or exogenous arachidonic acid) a balance of four major prostanoids: prostacyclin, thromboxane A2, prostaglandin D2, and 12-hydroxyheptadecatrienoic acid. Prostaglandin E2 was a minor fifth product, although these cells efficiently converted exogenous prostaglandin H2 to prostaglandin E2. By contrast, induction of cyclooxygenase-2 with lipopol- ysaccharide resulted in the preferential production of prostacyclin and prostaglandin E2. This shift in product profile was accentuated if cyclooxygenase-1 was permanently inactivated with aspirin before cyclooxygenase-2 induction. The conversion of exogenous prostaglandin H2 to prostaglandin E2 was only modestly increased by lipopolysaccharide treatment. Thus, cyclooxygenase-2 induction leads to a shift in arachidonic acid metabolism from the production of several prostanoids with diverse effects as mediated by cyclooxygenase-1 to the preferential synthesis of two prostanoids, prostacyclin and prostaglandin E2, which evoke common effects at the cellular level.  相似文献   

9.
The endogenous release of prostaglandins and free fatty acids from the isolated perfused rabbit kidney in the absence or presence of stimulation by bradykinin or angiotensin-II was investigated. Basal (nonstimulated) release of prostaglandin-precursor arachidonic acid was 15-20-fold higher than that of prostaglandin E2 indicating a low conversion of released arachidonate to prostaglandins. Addition of bovine serum albumin to the perfusion medium caused a substantial (50-250%) increase in the release of all fatty acids except myristic and arachidonic acids, and no significant change in prostaglandin E2 generation. In contrast, administration of bradykinin (0.5 microgram) or angiotensin-II (1 microgram) caused a 10-15-fold increase in prostaglandin E2 release, and with albumin present, also a 2-3-fold selective increase in arachidonic acid release. Thus, unlike what was observed under basal conditions, arachidonic acid released following hormone stimulation is efficiently converted to prostaglandin E2. We conclude that administration of bradykinin or angiotensin-II into the perfused kidney activates a lipase which selectively releases arachidonic acid, probably from a unique lipid entity. This lipase reaction is tightly coupled to a prostaglandin generating system so that the released arachidonate is first made available to the prostaglandin cyclooxygenase, resulting in its substantial conversion to prostaglandins.  相似文献   

10.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F1 alpha. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 microgram/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 microgram/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolases are independently regulated.  相似文献   

11.
Human synovial fibroblasts in culture respond to bradykinin with a 20-fold increment in intracellular cyclic AMP concentrations, however bradykinin does not directly activate adenylate cyclase activity in a particulate fraction derived from these cells. Bradykinin evokes a release of labeled arachidonic acid and prostaglandins E and F from synovial fibroblasts pre-labeled with 3H-arachidonic acid. Hydrocortisone inhibits the bradykinin induced increment in cyclic AMP and the release of arachidonic acid and prostaglandins E and F from synovial fibroblasts. Indomethacin, which also inhibits the cyclic AMP response to bradykinin, has no effect on the release of arachidonic acid from synovial fibroblasts. Indomethacin does, however, inhibit the quantity of prostaglandins released into the medium. These studies support the hypothesis that bradykinin does not activate human synovial fibroblast adenylate cyclase, but presumably activates a phospholipase whose products in turn result in the synthesis of prostaglandins. These and other investigations also suggest that a product(s) of the prostaglandin pathway causes the increment in cyclic AMP.  相似文献   

12.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

13.
Cultured endothelial cells isolated from bovine carotid aorta produce prostacyclin (prostaglandin I2) and a small amount of prostaglandin E2. The effects of kallikrein (EC 3.4.21.8) on the release of prostacyclin from the cells were studied with the radioimmunoassay technique. Kallikrein stimulated the release of prostacyclin in a dose-dependent manner. The maximal stimulation reached up to 9.2-fold at 0.1 micrograms/ml of kallikrein. The effect was not associated with the activation of the fatty acid cyclooxygenase, but with the stimulation of arachidonic acid release. But kallikrein itself did not have phospholipase activity. On the other hand, at the same doses, kallikrein failed to induce platelet aggregation or enhance platelet aggregation induced by collagen. Our findings suggest that the vasodilator effect of kallikrein is mediated in part by prostacyclin production. Furthermore, we investigated the possibility that the stimulatory effect of kallikrein on prostacyclin production in endothelial cells is associated with kinin formation. Bradykinin and lysylbradykinin (kallidin) also stimulated the release of prostacyclin, but the effects were far less than that of kallikrein. And the stimulation due to the addition of both kallikrein and bradykinin on prostacyclin and arachidonic acid release was not competitive or additive, but synergistic. Moreover, even if fetal calf serum was incubated with kallikrein, bradykinin was not detected at all. When kallikrein was pre-incubated with aporotinin, which is an inactivator of kallikrein, the effect of kallikrein was completely abolished. These findings suggest that the stimulatory effect of kallikrein on the release of prostacyclin from vascular cells is possibly not due to kinin formation, but to other substance(s) produced by this serine proteinase.  相似文献   

14.
The effect of sodium n-butyrate on prostaglandin synthesis in cultured cells was examined. Exposure of BC-90 cells, a clone of an epithelial rat liver cell line, to 1 mM sodium n-butyrate for 40 h induced prostacyclin production. Prostacyclin synthesis was proved by demonstrating: (1) production of labeled 6-ketoprostaglandin F1 alpha by treating [14C]arachidonic acid pre-labeled cells with calcium ionophore A23187, (2) production of unstable substance that inhibited adenosine diphosphate-induced platelet aggregation, and (3) conversion of [14C]arachidonic acid to 6-ketoprostaglandin F1 alpha in homogenates of n-butyrate-treated cells. Untreated control cells showed negligible prostaglandin synthesis. Untreated cell homogenates did not convert [14C]arachidonic acid to any prostaglandins, but they converted [14C]prostaglandin H2 to prostacyclin. Induction of prostacyclin production by n-butyrate was also demonstrated with cells that had been treated with acetylsalicylic acid before n-butyrate treatment in acetylsalicylic acid-free medium. Incorporation of [3H]acetylsalicylic acid by sodium n-butyrate-treated cells increased in accordance with treatment time, while that of untreated cells did not change during culture. There was no difference in the phospholipase A2 activities of n-butyrate-treated and -untreated cells. From these findings, the possibility that n-butyrate induced prostacyclin in BC-90 cells through induction of fatty acid cyclooxygenase activity is discussed.  相似文献   

15.
Arachidonic acid is released from specific glycerophospholipids in human amnion and is used to synthesize prostaglandins that are involved in parturition. In an investigation of the regulation of prostaglandin production in amnion, the effects of isoproterenol on discs of amnion tissue maintained in vitro were examined. Isoproterenol caused a large but transitory increase in the amount of cyclic AMP in amnion discs and this was accompanied by a sustained stimulation of the release of arachidonic acid (but not palmitic acid or stearic acid) and prostaglandin E2. The dependencies of cyclic AMP accumulation, arachidonic acid mobilization and prostaglandin E2 release on the concentration of isoproterenol were similar, each response was maximal at 10(-6) M isoproterenol and was inhibited by propranolol. Dibutyryl cyclic AMP stimulated the release of prostaglandin E2 from amnion discs. Although prostaglandin E2, when added to amnion discs caused an accumulation of cyclic AMP, it did not appear to mediate isoproterenol-induced accumulation of cyclic AMP since the latter effect was insensitive to indomethacin in concentrations at which prostaglandin production was inhibited greatly. These data support the proposition that catecholamines, found in increasing amounts in amniotic fluid during late gestation, may be regulators of prostaglandin production by the amnion.  相似文献   

16.
We have investigated the possible involvement of arachidonic acid metabolites in dopamine-induced inhibition of adrenocortical steroidogenesis. Administration of dopamine (5 x 10(-5) M) for 20 min to perifused frog adrenal slices caused a marked reduction of the release of both prostaglandin E2 (PGE2) and 6-keto-PGF1 alpha, the stable metabolite of prostacyclin (PGI2). Dopamine also induced a significant inhibition of corticosterone and aldosterone secretion. A lag period of 20 min was observed between inhibition of prostanoid and corticosteroid releases. Prolonged dopamine infusion did not prevent the stimulatory effect of PGE1, PGE2 or arachidonic acid on corticosteroid secretion. These observations indicate that activation of dopaminergic receptors in adrenocortical cells is linked to an inhibition of arachidonic acid metabolism. Our data also suggest that the inhibitory effect of dopamine occurs at a step preceding arachidonic acid formation.  相似文献   

17.
In an effort to obtain information on the possible source of prostaglandins which have been shown to play an important role in oviposition we examined the metabolism of arachidonic acid in microsomal preparations of both the muscular and the glandular tissue of the hen uterus. We found that adrenaline and tryptophan (but not hydroquinone) were effective stimulators of prostanoid synthesis. On incubation with [3H]arachidonic acid we identified, using TLC radiochromatography and several solvent systems, prostaglandins F2 alpha and E2 and, predominantly, thromboxane B2 which could not be attributed to platelet contamination. Addition of reduced glutathione increased prostaglandin E2 formation at the expense of thromboxane B2 and at 1 mM concentration suppressed adrenaline-promoted prostanoid synthesis. While the former effect has been documented in many other systems and could be ascribed to the activation of prostaglandin H2 to prostaglandin E2 isomerase, the latter effect is postulated to be due to an inhibition of cyclooxygenase. Interestingly, this inhibitory effect was shared by a number of reducing agents. Although the subcellular preparations were derived from structurally and functionally different tissues, there was no qualitative difference with respect to prostanoid synthesis. Our data support the role of locally produced primary prostaglandins in the regulation of oviposition and raise the question of a potential role for thromboxane in this process.  相似文献   

18.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

19.
Madin-Darby canine kidney cells deacylate arachidonic acid from cellular phospholipid in response to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and convert the free arachidonic acid to prostaglandins. We have used this system to characterize the acyl specificity of deacylation. Cells were labeled with either [14C]linoleic, [14C]eicosatrienoic (delta 8,11,14 or delta 5,8,11), or [14C]arachidonic acid and stimulated with 10 nM TPA. We found that TPA stimulated the deacylation of all four acids, primarily from phosphatidylethanolamine and phosphatidylcholine.l Only products from linoleic (presumably through chain elongation and desaturation), eicosatrienoic (delta 8,11,14), and arachidonic acids produced prostaglandins. Those produced from linoleic and eicosatrienoic acid (delta 8,11,14)-labeled cells were determined to be primarily of the 1-series, while arachidonic acid-labeled cells produced prostaglandins of the 2-series. Together these results indicate that the stimulated deacylation of phospholipids is not specific for arachidonic acid and that the membrane acyl composition controls the particular series of prostaglandin which is produced.  相似文献   

20.
Production of several metabolites of arachidonic acid by purified rat serosal mast cells in response to stimulation with the ionophore A23187 was assessed by stable isotope dilution assay using gas chromatography-mass spectrometry. Compounds quantified were prostaglandins D2, E2, F2 alpha, 6-keto-F1 alpha, thromboxane B2, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Mast cells incubated at 37 degrees C for 30 min without ionophore produced measurable quantities of all metabolites assayed. 4 microM A23187 resulted in substantial increased synthesis of all metabolites compared to control cells. Of the metabolites quantified, prostaglandin D2 and prostacyclin were the major products derived from arachidonic acid in ionophore-stimulated rat mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号