首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

2.
G Chin  M Forgac 《Biochemistry》1983,22(14):3405-3410
The (Na+ and K+)-stimulated adenosinetriphosphatase [(Na+,K+)-ATPase] consists of two different polypeptides, alpha and beta, both of which are embedded in the plasma membrane. The alpha chain from dog kidney (Na+,K+)-ATPase can be hydrolyzed at specific sites by trypsin and chymotrypsin [Castro, J., & Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228]. In order to position these sites with respect to the lipid bilayer, we have treated sealed, inside out vesicles from human red cells and unsealed kidney enzyme membranes with trypsin and chymotrypsin and have used ouabain-stimulated phosphorylation to identify the (Na+,K+)-ATPase and its fragments. All of the proteolytic sites observed in the kidney membranes are accessible in the inside out vesicles. The ouabain-inhibitable uptake of 86Rb+ in human red blood cells is resistant to externally added chymotrypsin. These results indicate that the proteolytic sites of the (Na+,K+)-ATPase are exposed on the cytoplasmic side of the membrane.  相似文献   

3.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

4.
A method for the isolation of brush-border membranes from newborn-rat kidney, employing centrifugation and free-flow electrophoresis, is described. The composition and purity of the preparation was assessed by determination of enzyme activities specific for various cellular membranes. Free-flow electrophoresis resolves the newborn-rat renal membrane suspension into two populations of alkaline phosphatase-enriched brush-border membranes, designated 'A' and 'B', with the A peak also showing activity of (Na+ + K+)-stimulated ATPase, the basolateral membrane marker enzyme, whereas those of the B peak were enriched 11-fold in alkaline phosphatase and substantially decreased in (Na+ + K+)-stimulated ATPase activity. Membranes in the A peak showed a 7-fold enrichment of alkaline phosphatase, and (Na+ + K+)-stimulated ATPase activity similar to that of the original homogenate. Proline uptake employed to assess osmotic dependency revealed 7% binding of proline to the B vesicles and 31% to the A vesicles. This contrasts with 60% proline binding to vesicles prepared by centrifugation alone. Unlike vesicles from adult animals, proline uptake by B vesicles did not show an Na+-stimulated overshoot, but did exhibit an Na+-gradient enhanced rate of early proline entry. proline entry.  相似文献   

5.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

6.
P L Yeagle  J Young  D Rice 《Biochemistry》1988,27(17):6449-6452
The (Na+,K+)-ATPase ATP hydrolyzing activity from rabbit kidney medulla basolateral membrane vesicles was studied as a function of the cholesterol content of the basolateral membranes. The cholesterol content of the membranes was modified by incubation with phospholipid vesicles. When the cholesterol content was increased above that found in the native membrane, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. When the cholesterol content was decreased from that found in the native membranes, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. Analogous effects were found with the K+-activated phosphatase activity of the same membrane vesicles. Therefore, at low cholesterol contents, cholesterol was stimulatory, and at high cholesterol contents, cholesterol was inhibitory. The structural specificity of this effect was tested by introducing lanosterol and ergosterol as 50% of the membrane sterol. Ergosterol was the least effective at supporting (Na+,K+)-ATPase ATP hydrolyzing activity, while lanosterol was more effective, but still not as effective as cholesterol.  相似文献   

7.
The orientation of amino groups in the membrane in the alpha- and beta-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of alpha-subunit, beta-subunit and proteolytic fragments of alpha-subunit. Both the alpha- and the beta-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the beta-subunit are located on the extracellular surface. In the alpha-subunit, 65-80% of modified groups are localized to the cytoplasmic surface and 20-35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the alpha-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the alpha-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the beta-subunit being on the extracellular surface, while the alpha-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

8.
Basolateral membrane vesicles were isolated from the rat kidney cortex by a modified method of cation precipitation. Different steps of preparation were analysed using the marker enzymes: Na+,K+-ATPase (for basolateral membrane), alkaline phosphatase (for apical membrane), glucose-6-phosphatase (for membranes of endoplasmic reticulum) and succinate dehydrogenase (for mitochondria). The basolateral membrane was purified by a 8-9-fold treatment with Na+,K+-ATPase, while other membrane contaminations were as low as 2% (as compared to homogenate). The transport of 3H-p-aminohippurate (3H-PAH) by basolateral membrane vesicles was measured under different experimental conditions. The 3H-PAH uptake was found to be Na-gradient dependent. The initial rate of 3H-PAH uptake in the presence of NaCl gradient (500 pM/mg X min) was higher than without the gradient (88 pM/mg X min). It is concluded that the PAH transfer across the basolateral membrane may be energized by the Na+ chemical gradient.  相似文献   

9.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

10.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124-132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ plus K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ plus K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca(2+), and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ plus K+)-activated ATPase activity averaged 10.07 plus or minus 2.80 mumol Pi/mg protein per h compared to 50.03 plus or minus 11.41 for Mg(2+)-activated ATPase and 58.66 plus or minus 10.07 for 5'-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ plus K+)-activated ATPase without any effect on Mg(2+)-activated ATPase. Both (Na+ plus K+)-activated ATPase and Mg(2+)-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ plus K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ plus K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

11.
Erythrocyte plasma membranes were isolated from a homogeneous population of human or rabbit erythrocytes fractionated into classes representing young, middle-age and old age in vivo. Lipid analyses of human erythrocyte plasma membranes reveal a decrease of the cholesterol to phospholipid molar ratio, followed by a marked decrease in the activities of the membrane-bound enzymes (Na+,K+)-stimulated ATPase, acetylcholinesterase and NAD+ase from young to old age. Such changes were not observed between young and middle-age rabbit erythrocytes. Incubation of rabbit young erythrocytes with phosphatidylcholine vesicles (liposomes) to obtain partial depletion of their membrane cholesterol, indicated that cholesterol depletion causes a statistically significant decrease of the (Na+,K+)-stimulated ATPase and acetylcholinesterase activities, but the NAD+ase activity remained almost unchanged. The biological significance of these data are discussed in terms of the differences and modifications in the interaction of membrane-bound enzymes with membrane lipids during in vivo ageing of erythrocytes.  相似文献   

12.
Two ATPase activities, a Na+-ATPase and a (Na+ + K+)-ATPase, have been found associated with sheets of basolateral plasma membranes from guinea-pig small intestinal epithelial cells. The specific activity of the former is 10-15% of the latter. The two ATPase activities differ in their affinity for Na+, their optimal pH, their K+ requirement and particularly in their behaviour in the presence of some inhibitors and of Ca2+. Thus the Na+-ATPase is refractory to ouabain but it is strongly inhibited by ethacrynic acid and furosemide, whilst the (Na+ + K+)-ATPase is totally suppressed by ouabain, partially by ethacrynic acid and refractory to furosemide. In addition, the Na+-ATPase is activated by micromolar concentrations of calcium and by resuspension of the membrane preparation at pH 7.8. The Na+-ATPase is only stimulated by sodium and to a lesser extent by lithium; however, this stimulation is independent of the anion accompanying Na+. The latter rules out the participation of an anionic ATPase. The relation between the characteristics of the sodium transport mechanism in basolateral membrane vesicles (Del Castillo, J.R. and Robinson, J.W.L. (1983) Experientia 39,631) and those of the two ATPase activities present in the same membranes, allow us to postulate the existence of two separate sodium pumps in this membranes. Each pump would derive the necessary energy for active ion transport from the hydrolysis of ATP, catalyzed by different ATPase systems.  相似文献   

13.
When purified on a sucrose gradient, basolateral membranes from dog kidney outer medulla are found to be very rich in (Na,K)-ATPase; about 50% of the membrane protein is comprised of this enzyme. (Na,K)-ATPase activity is activated 3- to 5-fold by detergent treatment, and this has been previously attributed to the impermeable vesicular nature of the membranes. Porcine trypsin inactivates only that fraction of (Na,K)-ATPase activity seen without detergent, consistent with a right-side-out orientation of membrane vesicles; the trypsin sensitivity and detergent activation of [3H]ouabain binding in the presence of Na+ + Mg2+ + ATP or Mg2+ + Pi are also consistent with this hypothesis. Using nearly isosmotic Hypaque density gradient centrifugation a population of impermeable right-side-out membrane vesicles (H1) is separated from a leaky population (H2). (Na,K)-ATPase activity in the H1 population is 20-fold activated by detergent and insensitive to porcine trypsin. The vesicle volume is 2.4 microliters/mg, and monovalent cations passively equilibrate with the intravesicular volume on a time scale of 5-30 min. Very rapid ouabain sensitive 22Na efflux from the vesicles is observed when ATP is photolytically released from intravesicular caged ATP.  相似文献   

14.
We have characterized the effect of a stable small molecule isolated from bovine hypothalamus (Haupert, G. T., and Sancho, J. M. (1979) Proc. Natl. Acad. Sci. 76, 4658-4660) on mammalian (Na,K)ATPase. This hypothalamus-derived inhibitory factor, HIF, has been shown to inhibit ATPase activity of purified dog kidney enzyme reversibly with high affinity (Haupert, G. T., Carilli, C. T., and Cantley, L. C. (1984) Am. J. Physiol. 247, F919-F924). In this report it is shown that HIF inhibits the ouabain sensitive component of 86Rb+ uptake into human red blood cells. HIF also inhibited (Na,K)ATPase activity of unsealed red cell membranes but not that of sealed inside-out vesicles, indicating that HIF is impermeant to red cell membranes and inhibits the (Na,K)ATPase from the extracellular side. In unsealed human red cell membranes, concentrations of HIF which caused 70% inhibition of the (Na,K)ATPase did not inhibit ATP hydrolysis by plasma membrane (Ca2+)ATPase or (Mg2+)ATPase. However, at a similar concentration, HIF was shown to inhibit rabbit muscle sarcoplasmic reticulum (Ca2+)ATPase. HIF also inhibited p-nitrophenylphosphatase activity of unmodified or fluorescein-5'-iso-thiocyanate labeled dog kidney (Na,K)ATPase. As judged by fluorescein fluorescence of the modified enzyme, HIF stabilized the low fluorescent "E2" conformation of the enzyme similar to that stabilized by ouabain. However, unlike ouabain, HIF blocked covalent phosphorylation of dog kidney (Na,K)ATPase by inorganic phosphate. These studies show that HIF is an inhibitor of (Na,K)ATPase which acts from the extracellular side of the membrane by a mechanism similar to but not identical to that of cardiac glycosides.  相似文献   

15.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

16.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

17.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

18.
Isolation and characterization of Neurospora crassa plasma membranes.   总被引:7,自引:0,他引:7  
The isolation and characterization of plasma membranes from a cell wall-less mutant of Neurospora crassa are described. The plasma membranes are stabilized against fragmentation and vesiculation by treatment of intact cells with concanavalin A just prior to lysis. After lysis, the concanavalin A-stabilized plasma membrane ghosts are isolated by low speed centrifugation techniques and the purified ghosts subsequently converted to vesicles by removal of the bulk of the concanavalin A. The yield of ghosts is about 50% whereas the yield of vesicles is about 20%. The isolated plasma membrane vesicles have a characteristically high sterol to phospholipid ratio, Mg2+-dependent ATPase activity and (Na+ plus K+)-stimulated Mg2+ATPase activity. Only traces of succinate dehydrogenase and 5'-nucleotidase are present in the plasma membrane preparations.  相似文献   

19.
Fluorescence microphotolysis (recovery after photobleaching) was used to determine the lateral mobility of the (Na+,K+)ATPase and a fluorescent lipid analogue in the plasma membrane of Madin-Darby canine kidney (MDCK) cells at different stages of development. Fluorescein-conjugated Fab' fragments prepared from rabbit anti-dog (Na+,K+)ATPase antibodies (IgG) and 5-(N-hexadecanoyl)aminofluorescein (HEDAF) were used to label the plasma membrane of confluent and subconfluent cultures of MDCK cells. Fractional fluorescence recovery was 50% and 80-90% for the protein and lipid probes, respectively, and was independent of developmental stage. The estimated diffusion constants of the mobile fraction were approximately 5 X 10(-10) cm2/s for the (Na+,K+)ATPase and approximately 2 X 10(-9) cm2/s for HEDAF. Only HEDAF diffusion showed dependency on developmental stage in that D for confluent cells was approximately twice that for subconfluent cells. These results indicate that (Na+,K+)ATPase is 50% immobilized in all developmental stages, whereas lipids in confluent MDCK cells are more mobile than in subconfluent cells. They suggest, furthermore, that the degree of immobilization of the (Na+,K+)ATPase is insufficient to explain its polar distribution, and they support restricted mobility of the ATPase through the tight junctions as the likely mechanism for preventing the diffusion of this protein into the apical domain of the plasma membrane in confluent cell cultures.  相似文献   

20.
Distal urinary acidification is thought to be mediated by a proton ATPase (H+-ATPase). We isolated a plasma membrane fraction from human kidney cortex and medulla which contained H+-ATPase activity. In both the cortex and medulla the plasma membrane fraction was enriched in alkaline phosphatase, maltase, Na+,K+-ATPase and devoid of mitochondrial and lysosomal contamination. In the presence of oligomycin (to inhibit mitochondrial ATPase) in the presence of ouabain (to inhibit Na+,K+-ATPase) and in the absence of Ca (to inhibit Ca2+-ATPase) this plasma membrane fraction showed ATPase activity which was sensitive to dicyclohexylcarbodiimide and N-ethylmaleimide. This ATPase activity was also inhibited by vanadate, 4,4'-diisothiocyano-2,2'-disulfonic stilbene and ZnSO4. In the presence of ATP, but not GTP or UTP, the plasma membrane fraction of both cortex and medulla was capable of quenching of acridine orange fluorescence, which could be dissipated by nigericin indicating acidification of the interior of the vesicles. The acidification was not affected by presence of oligomycin or ouabain indicating that it was not due to mitochondrial ATPase or Na+,K+-ATPase, respectively. Dicyclohexylcarbodiimide and N-ethylmaleimide completely abolished the acidification by this plasma membrane fraction. In the presence of valinomycin and an outward-directed K gradient, there was increased quenching of acridine orange, indicating that the H+-ATPase is electrogenic. Acidification was not altered by replacement of Na by K, but was critically dependent on the presence of chloride. In summary, the plasma membrane fraction of the human kidney cortex and medulla contains a H+-ATPase, which is similar to the H+-ATPase described in other species, and we postulate that this H+-ATPase may be involved in urinary acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号