首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

2.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

3.
An in vitro plant regeneration protocol of Cymbidium faberi from immature seeds was established. The immature seeds of 50 days old started to form rhizomes 4 months after they were cultured on hormone free medium. The rhizomes multiplied 5 times when subcultured on the medium containing 1.0 mg l–1 -naphthalene acetic acid (NAA) for 40 days and more than 90% of the rhizomes initiated shoots within 60 days on the media containing 0.5 or 1.0 mg l–1 NAA plus 2.0 or 5.0 mg l–1N6-benzylaminopurine (BA). Plantlets were regenerated when the shoots were planted on the basal medium amended with 1 g l–1 activated charcoal for 50 days and the plantlets grew normally after transplanting.  相似文献   

4.
A multi-needle-assisted transformation of soybean cotyledonary node cells   总被引:3,自引:0,他引:3  
Xue RG  Xie HF  Zhang B 《Biotechnology letters》2006,28(19):1551-1557
A new and simple method for wounding cotyledonary node cells of soybean [Glycine max (L) Merrill] was developed for obtaining a high frequency of transformants. Soybean seeds were germinated for 1 day, and the cotyledonary node cells of half-seeds were wounded mechanically by using a multi-needle consisting of thin 30 fibers. The wounded half-seeds were inoculated with Agrobacterium tumefaciens cells harboring a recombinant DNA that contained the bar and sgfp genes conferring phosphinothricin (PPT)-resistance and green fluorescent protein (GFP) activity, respectively. The inoculated explants were selected on medium containing 5 or 3 mg PPT/l. The transformation efficiency of soybean was up to 12%. Polymerase chain reaction and genomic Southern blot analysis confirmed stable integration of the transgenes in the genome of the PPT-resistant plants. GFP analysis revealed that the transgenes were highly expressed in the plantlets. Adult plants were resistant to 100 mg PPT/l applied on the leaves, demonstrating their herbicide-resistance.An erratum to this article can be found at  相似文献   

5.
Shu QY  Liu GS  Xu SX  Li XF  Li HJ 《Plant cell reports》2005,24(1):36-44
Chinese leymus [Leymus chinensis (Trin.) Tzvel.] is a perennial grass (tribe Gramineae) that is widely distributed throughout northern China and Mongolia where it is produced as a forage product. Severe production losses due to weed growth have serious economic consequences, and as non-selective herbicides not only kill the weeds but are also harmful to this forage grass, the introduction of a foreign gene for resistance to the herbicide Basta is necessary since this species lacks herbicide resistance. We have investigated the transformation of a gene for phosphinothricin acetyltransferase (PAT) through microprojectile bombardment in Chinese leymus. Calli from immature inflorescences cultured on N6 medium supplemented with 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 5.0 mg/l of glutamine were bombarded. The bombarded calli survived on selection medium with 1.0 mg/l of phosphinothricin (PPT). Twenty-three plantlets regenerated from resistant calli on differentiation medium supplemented with 1.0 mg/l 6-benzylaminopurine, 1.0 mg/l kinetin, and 1.0 mg/l PPT, and five of these regenerated plantlets survived on rooting medium with 1.0 mg/l of PPT. PCR and Southern blotting analyses indicated that the PAT gene had been integrated into the genomes of two Chinese leymus plantlets and that the gene was stably transferred to its clonal offsprings. There were no other phenotypic effects associated with transgene expression during vegetative growth except tolerance to the herbicide Basta.The Biotechnology of Pasture Plant Program is funded by the Key Project of the Chinese Academy of Sciences (KSCX1-08)  相似文献   

6.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

7.
Summary Aiming at the genetic improvement of garlic cultivars, a cell suspension protocol was established which includes the induction of friable callus, establishment of cells in liquid medium, plating, regeneration, and bulb formation. Calluses of various textures from compact to friable and from green to yellowish were obtained by culturing explants excised from inner leaves of garlic bulbs on Marashig-Shoog (MS) medium with 2,4 dichlorophenoxy acetic acid (2,4-D), (1.1 mg/liter [5.0 μM]), picloram (1.2 mg/liter [5.0 μM]), and kinetin (2.1 mg/liter [10 μM]). Friable callus occurred on MS-A contained 2,4-D alone (1.0 mg/liter [4.52 μM]) and this callus was used to develop cell suspension cultures, which were maintained in liquid MS-B medium with a 2,4-D/benzyl adenine (BA) (0.5 mg/liter [2.25 μM]: 0.5 mg/liter [2.22 μM]) ratio. High plating efficiency was obtained on MS-C medium with different naphthalene acetic acid/BA combinations. Regeneration occurred after transfer of the caulogenic mass to MS-C medium containing 10 mg/liter (74.02 μM) and 20 mg/liter (148.04 μM) adenine for 60 days, followed by transfer to adenine-free medium. Plantlets transplanted to soil showed normal phenology. Shoots grown on modified MS medium supplemented with indolylbutryic acid (3.0 mg/liter [14.7 μM]) stimulated bulb formation by 30 days in culture.  相似文献   

8.
Excised seedling leaf segments of winged bean [Psophocarpus tetragonolobus (L.) DC.] underwent direct somatic embryogenesis under appropriate incubation conditions. Initiation and development of the somatic embryos occurred using a two-step culture method. The culture procedure involved incubation for 28 days on MS basal medium supplemented with 0.1–0.5 mg/l NAA and 1.0–2.0 mg/l BA (induction medium) before transfer to MS medium supplemented with 0.1 mg/l IAA and 2.0 mg/l BA (embryo development medium). The initial exposure to low levels of NAA coincident with high levels of BA in the induction medium was essential for embryogenic induction. Maximum embryogenesis (43.3%) was obtained with 0.2 mg/l NAA and 2.0 mg/l BA, and at least 14 days on induction medium were required prior to transfer to the embryo development medium. The conversion frequency of cotyledonary embryos was 53.3% upon culture on MS medium containing 0.1 mg/l ABA for 7 days followed by transfer to MS medium supplemented with 0.1 mg/l IBA and 0.2 mg/l BA. Following conversion, the regenerated plantlets were transferred to soil and showed normal morphological characteristics.Abbreviations MS Murashige and Skoog (1962) medium - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - BA 6-benzylaminopurine - ABA abscisic acid  相似文献   

9.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

10.
Callus was obtained from segments of immature inflorescence of Coix lacryma-jobi cultured on N6 medium containing 1–2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 3–5% sucrose. Plantlets were regenerated when embryogenic calluses were transferred onto MS medium with 0.5 mg/l kinetin and 0.01 mg/l naphthaleneacetic acid (NAA). Regenerated plants had the diploid chromosome number (2n=20).  相似文献   

11.
Summary Plantlets of Capsicum annuum L. ev. Sweet Banana regenerated via somatic embryogenesis from immature zygotic embryos were capable of producing flower, fruit, and seed when cultured in small tissue culture containers. In vitro floral buds were first formed on plantlets that grew on plantlet development medium [agar-gelled Murashige and Skoog (MS) basal medium containing 1 mgl−1 (5.3 μM) α-naphthaleneacetic acid (NAA)] in a growth room at 22°C and continuous illumination. However, floral buds rarely developed further into mature flowers. This problem was overcome using the vented autoclavable plant tissue culture containers. In vitro fruit formation and ripening was observed when liquid half-strength MS basal medium supplemented with 5 μg ml−1 silver thiosulfate, 1 mg l−1 (5.3 μM) NAA, and 3% sucrose was added to the surface of the plantlet development medium. Hand-pollination improved fruit set. Further research in needed to determine why the pepper seeds formed in vitro failed to germinate.  相似文献   

12.
Cryopreservation of immature seeds of Bletilla striata by vitrification   总被引:5,自引:0,他引:5  
An efficient protocol was established for the cryopreservation of immature seeds of a terrestrial orchid, Bletilla striata. Immature seeds collected 2–4 months after pollination (MAP) were treated using three different cryogenic procedures: (1) direct plunging into liquid nitrogen, (2) vitrification, and (3) vitrification with preculture. When immature seeds collected 3 MAP and 4 MAP were precultured for 3 days on New Dogashima medium supplemented with 0.3 M sucrose and cryopreserved by vitrification, the survival rate after preservation, as assessed by staining with 2,3,5-triphenyltetrazolium chloride, was 92% and 81%, respectively. Immature seeds thus treated showed no decrease in germination rate relative to untreated immature seeds, and they developed into normal plantlets in vitro.  相似文献   

13.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

14.
An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.  相似文献   

15.
Summary Pollen calli and plantlets of Hordeum vulgare cv. Sabarlis were obtained through direct pollen culture without pretreatment of spikes or preculture of anthers. Isolated immature pollen grains were cultured first in a 0.3 M mannitol solution or a C1 basal medium (Chen et al. 1979) supplemented with 0.3 M mannitol but without sucrose for 5–7 days, then transferred into a C1 medium containing 6% sucrose, 3 mM glutamine and 5 mM m-inositol. After a 3 week culture period small pollen calli derived from the pollen grains were transferred into a growth medium comprising C1 basal medium supplemented with 250 mg/1 lactalbumin hydrolysate and 0.5 mg/1 kinetin. For shoot regeneration, vigorously growing calli were transferred onto agarsolidified MS medium (Murashige and Skoog 1962) containing 3% sucrose, 2 mg/1 benzyladenine and 0.5 mg/1 indole-3-acetic acid. The ratio of green plants to albino was approximately 12.2.  相似文献   

16.
Phenological and some biological characteristics of Hippodamia (Adonia) variegata (Goeze) (Coleoptera: Coccinellidae), such as voltinism, hibernation, number of progeny produced by each generation, mating activity and sex ratio were studied, in order to evaluate the significance of this predator. The study of phenology was conducted in outdoor cages in Kifissia (Athens), during 1999--2001 and as prey was given Dysaphis crataegi (Kaltenbach). Hippodamia variegata completed seven generations between April and November. The hibernating population of H. variegata consisted of adults of 6th and 7th generations. The fecundity of the predator was studied under constant conditions [25 °C, 65% R.H. and 16:8(L:D)h photoperiod] in the laboratory and some population parameters were calculated: The total fecundity ranged between 789 and 1256 eggs, while the mean total fecundity was 959.6 eggs. The greatest proportion of eggs (45%) was oviposited in clutches of 11--20 eggs. The net reproductive value (R0) was found to be 425.9 females/female, the intrinsic rate of increase (rm) 0.178 females/female/day and the mean generation time (T) 34.0 days.  相似文献   

17.
Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).  相似文献   

18.
Zhao D  Fu C  Chen Y  Ma F 《Plant cell reports》2004,23(7):468-474
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.Abbreviations AS Acetosyringone - BA Benzyladenine - cef Cefotaxime sodium - DW Dry weight - FW Fresh weight - HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid - km Kanamycin - NAA -Naphthaleneacetic acid - SDS Sodium dodecyl sulfate  相似文献   

19.
Summary A procedure has been developed for the induction of root or shoot formation from root meristems of germinated seeds ofPetunia hybrida. Root formation was obtained on Murashige and Skoog (MS) medium supplemented with a combination of 6-benzylaminopurine (BA) (0–0.5 mg/l) and naphtaleneacetic acid (NAA) (0.05–2.0 mg/l). Induction of predominantly shoot formation was obtained on MS medium containing the following combinations of hormones (in mg/l): 0.05–0.5 NAA and 0.25–2.0 BA. Complete plant formation was obtained after rooting of the shoots on MS medium supplemented with IAA (0–2.0 mg/l) or NAA (0-0.5 mg/l).  相似文献   

20.
Immature and mature nonstratified seeds of white ash (Fraxinus americana L.) were dissected transversely and 2/3 of each seed was placed onto agar-solidified Murashige and Skoog medium. Adventitious buds, shoots, and somatic embryos formed on callus, cotyledons, and hypocotyls of the resulting seedlings. Shoot organogenesis was induced on explants cultured on medium with 10 M thidiazuron but not on explants on media with benzyladenine (BA) or isopentenyladenine. Not all seed sources were equally capable of shoot organogenesis and embryogenesis. Atypical of adventitious regeneration of other woody plants, mature seed explants of white ash were more organogenic with shoots that elongated better than explants from immature seeds. Somatic embryogenesis was observed in cultures where mature seeds were first cultured for 4 weeks on a medium containing 10 M adenine 2,4-dichlorophenoxyacetic acid in combination with 0.1 and 1.0 M thidiazuron, followed by transfer to a medium containing 0.05 M 6-benzyladenine and 0.5 M naphthaleneacetic acid. Adventitious shoots and epicotyls from both seedlings and germinated somatic embryos were rooted under intermittent mist and acclimatized to the greenhouse.Abbreviations BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - IBA indolebutyric acid - 2iP isopentenyladenine - NAA naphthaleneacetic acid - TDZ thidiazuron-N-phenyl-N-1,2,3-thiadiazol-5-ylurea - WPM woody plant medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号