首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keratins 8 and 18 belong to the keratin family of intermediate filament (IF) proteins and constitute a hallmark for all simple epithelia, including the liver. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18). In these cells, the loss of one partner via a targeted null mutation in the germline results in hepatocytes lacking K8/K18 IFs, thus providing a model of choice for examining the function(s) of simple epithelium keratins. Here, we report that K8-null mouse hepatocytes in primary culture and in vivo are three- to fourfold more sensitive than wild-type (WT) mouse hepatocytes to Fas-mediated apoptosis after stimulation with Jo2, an agonistic antibody of Fas ligand. This increased sensitivity is associated with a higher and more rapid caspase-3 activation and DNA fragmentation. In contrast, no difference in apoptosis is observed between cultured K8-null and WT hepatocytes after addition of the Fas-related death-factors tumor necrosis factor (TNF) alpha or TNF-related apoptosis-inducing ligand. Analyses of the Fas distribution in K8-null and WT hepatocytes in culture and in situ demonstrate a more prominent targeting of the receptor to the surface membrane of K8-null hepatocytes. Moreover, altering Fas trafficking by disrupting microtubules with colchicine reduces by twofold the protection generated against Jo2-induced lethal action in K8-null versus WT hepatocytes. Together, the results strongly suggest that simple epithelium K8/K18 provide resistance to Fas-mediated apoptosis and that this protection occurs through a modulation of Fas targeting to the cell surface.  相似文献   

2.
Microtubules (MTs) and microfilaments (MFs) are known to modulate mitochondrial morphology, distribution and function. However, little is known evidence about the role of intermediate filaments (IFs) in modulating mitochondria except desmin. To investigate whether or not the IFs regulate mitochondrial morphology, distribution, and function, we manipulated the IFs of cultured epithelial cells to express a mutant keratin 18 (K18). In contrast to the filamentous expression of wild K18, mutant K18 induced aggregation of K8/18, showing no fine IF network in the cells. In mutant K18-transfected cells, the mitochondria were fragmented into small spheroids, although they were observed as mitochondrial fibers in un-transfected or wild K18-transfected cells. Fluorescence recovery after photobleaching of fluorescence-labeled mitochondria was markedly less in the mutant K18-transfected cells, although a significant recovery was confirmed in wild K18-transfected cells. These findings suggest that the IFs are important for the maintenance of normal mitochondrial structures.  相似文献   

3.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo.  相似文献   

4.
《The Journal of cell biology》1995,131(5):1275-1290
Separate populations of microtubules (MTs) distinguishable by their level of posttranslationally modified tubulin subunits and by their stability in vivo have been described. In polarized 3T3 cells at the edge of an in vitro wound, we have found a striking preferential coalignment of vimentin intermediate filaments (IFs) with detyrosinated MTs (Glu MTs) rather than with the bulk of the MTs, which were tyrosinated MTs (Tyr MTs). Vimentin IFs were not stabilizing the Glu MTs since collapse of the IF network to a perinuclear location, induced by microinjection of monoclonal anti-IF antibody, had no noticeable effect on the array of Glu MTs. To test whether Glu MTs may affect the organization of IFs we regrew MTs in cells that had been treated with nocodazole to depolymerize all the MTs and to collapse IFs; the reextension of IFs into the lamella lagged behind the rapid regrowth of Tyr MTs, but was correlated with the slower reformation of Glu MTs. Similar realignment of IFs with newly formed Glu MTs was observed in serum-starved cells treated with either serum or taxol to induce the formation of Glu MTs. Next, we microinjected affinity purified antibodies specific for Glu tubulin (polyclonal SG and monoclonal 4B8) and specific for Tyr tubulin (polyclonal W2 and monoclonal YL1/2) into 3T3 cells. Both injected SG and 4B8 antibodies labeled the subset of endogenous Glu MTs; W2 and YL1/2 antibodies labeled virtually all of the cytoplasmic MTs. Injection of SG or 4B8 resulted in the collapse of IFs to a perinuclear region. This collapse was comparable to that observed after complete MT depolymerization by nocodazole. Injection of W2, YL1/2, or nonspecific control IgGs did not result in collapse of the IFs. Taken together, these results show that Glu MTs localize IFs in migrating 3T3 fibroblasts and suggest that detyrosination of tubulin acts as a signal for the recruitment of vimentin IFs to MTs.  相似文献   

5.
Keratin intermediate filaments (IFs) fulfill an important function of structural support in epithelial cells. The necessary mechanical attributes require that IFs be organized into a crosslinked network and accordingly, keratin IFs are typically organized into large bundles in surface epithelia. For IFs comprised of keratins 5 and 14 (K5, K14), found in basal keratinocytes of epidermis, bundling can be self-driven through interactions between K14's carboxy-terminal tail domain and two regions in the central α-helical rod domain of K5. Here, we exploit theoretical principles and computational modeling to investigate how such cis-acting determinants best promote IF crosslinking. We develop a simple model where keratin IFs are treated as rigid rods to apply Brownian dynamics simulation. Our findings suggest that long-range interactions between IFs are required to initiate the formation of bundlelike configurations, while tail domain-mediated binding events act to stabilize them. Our model explains the differences observed in the mechanical properties of wild-type versus disease-causing, defective IF networks. This effort extends the notion that the structural support function of keratin IFs necessitates a combination of intrinsic and extrinsic determinants, and makes specific predictions about the mechanisms involved in the formation of crosslinked keratin networks in vivo.  相似文献   

6.
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.  相似文献   

7.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

8.
The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t(1/2) of approximately 100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 microm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.  相似文献   

9.
FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.  相似文献   

10.
The animal cell cytoskeleton consists of three interconnected filament systems: actin-containing microfilaments (MFs), microtubules (MTs), and the lesser known intermediate filaments (IFs). All IF proteins share a common tripartite domain structure and the ability to assemble into 8-12 nm wide filaments. Electron microscopy data suggest that IFs are built according to a completely different plan from that of MFs and MTs. IFs are known to impart mechanical stability to cells and tissues but, until recently, the biomechanical properties of single IFs were unknown. However, with the discovery of naturally occurring micrometer-wide IF bundles and the development of new methodologies to mechanically probe single filaments, it is now possible to propose a more unified view of IF biomechanics. Unlike MFs and MTs, single IFs can now be described as flexible, extensible and tough, which has important implications for our understanding of cell and tissue mechanics. Furthermore, the molecular mechanisms at play when IFs are deformed point toward a pivotal role for them in mechanotransduction.  相似文献   

11.
Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.  相似文献   

12.
We previously reported that shear stress induces phosphorylation and disassembly of keratin intermediate filaments (IFs). Shear stress also induces a time- and strain-dependent degradation of keratin IFs, and the current study examines the mechanisms involved in degradation of keratin proteins in human A549 cells exposed to 0-24 h of shear stress (7.5-30 dynes/cm(2)). Ubiquitin was found to be covalently associated with keratin proteins immunoprecipitated from shear-stressed cells, and pretreatment with the proteasomal inhibitor MG132 prevented the degradation of the keratin IF network. Importantly, phosphorylation of K8 Ser-73 is required for the shear stress-mediated ubiquitination, disassembly, and degradation of the keratin IF network. Immunofluorescence microscopy revealed that shear stress caused the thin array of keratin fibrils observed in control cells to be reorganized into a perinuclear aggregate, known as an aggresome, and that ubiquitin was also associated with this structure. Finally, the E2 enzymes, UbcH5b, -c, and Ubc3, but not E2-25K are required for the shear stress-mediated ubiquitin-proteasomal degradation of keratin proteins. These data suggest that shear stress promotes the disassembly and degradation of the keratin IF network via phosphorylation and the ubiquitin-proteasome pathway.  相似文献   

13.
Intermediate filament cytoskeleton of the liver in health and disease   总被引:6,自引:3,他引:3  
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.  相似文献   

14.
Ezrin connects the apical F-actin scaffold to membrane proteins in the apical brush border of intestinal epithelial cells. Yet, the mechanisms that recruit ezrin to the apical domain remain obscure. Using stable CACO-2 transfectants expressing keratin 8 (K8) antisense RNA under a tetracycline-responsive element, we showed that the actin-ezrin scaffold cannot assemble in the absence of intermediate filaments (IFs). Overexpression of ezrin partially rescued this phenotype. Overexpression of K8 in mice also disrupted the assembly of the brush border, but ezrin distributed away from the apical membrane in spots along supernumerary IFs. In cytochalasin D-treated cells ezrin localized to a subapical compartment and coimmunoprecipitated with IFs. Overexpression of ezrin in undifferentiated cells showed a Triton-insoluble ezrin compartment negative for phospho-T567 (dormant) ezrin visualized as spots along IFs. Pulse-chase analysis showed that Triton-insoluble, newly synthesized ezrin transiently coimmunoprecipitates with IFs during the first 30 min of the chase. Dormant, but not active (p-T567), ezrin bound in vitro to isolated denatured keratins in Far-Western analysis and to native IFs in pull-down assays. We conclude that a transient association to IFs is an early step in the polarized assembly of apical ezrin in intestinal epithelial cells.  相似文献   

15.
16.
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.  相似文献   

17.
Fas-induced apoptosis is initiated through the recruitment of FADD and procaspase 8 to form the death-inducing signaling complex (DISC). In some cells (type I cells) the initiator caspase 8 directly activates effector caspases such as procaspase 3, whereas in others (type II cells) the death signal is amplified through mitochondria. In epithelial cells, Fas-induced hierarchic caspase activation is also linked with DEDD, a member of the DED family that binds to keratin (K) intermediate filaments (IFs). Hepatocytes are type II cells and their IFs are made exclusively of K8/K18. We have shown previously that K8-null mouse hepatocytes, lacking K8/K18 IFs, are more sensitive than their wild-type counterparts to Fas-induced apoptosis. Here, by examining the cell-death kinetics and death-signaling ordering, we found that K8-null hepatocytes exhibited prominent DISC formation, higher procaspase 8 activation and direct procaspase 3 activation as reported for type I cells; however they experienced a reduced Bid cleavage and a stronger procaspase 9 activation. In addition, the K8/K18 loss altered the DEDD ubiquitination status and nuclear/cytoplasmic distribution. Together, the results suggest that the K8/K18 loss induces a switch in Fas-induced death signaling, likely through a DEDD involvement. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light–induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.  相似文献   

19.
Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.  相似文献   

20.
Intermediate filaments (IFs) are structural elements of eukaryotic cells with distinct mechanical properties. Tissue integrity is severely impaired, in particular in skin and muscle, when IFs are either absent or malfunctioning due to mutations. Our knowledge on the mechanical properties of IFs is mainly based on tensile testing of macroscopic fibers and on the rheology of IF networks. At the single filament level, the only piece of data available is a measure of the persistence length of vimentin IFs. Here, we have employed an atomic force microscopy (AFM) based protocol to directly probe the mechanical properties of single cytoplasmic IFs when adsorbed to a solid support in physiological buffer environment. Three IF types were studied in vitro: recombinant murine desmin, recombinant human keratin K5/K14 and neurofilaments isolated from rat brains, which are composed of the neurofilament triplet proteins NF-L, NF-M and NF-H. Depending on the experimental conditions, the AFM tip was used to laterally displace or to stretch single IFs on the support they had been adsorbed to. Upon applying force, IFs were stretched on average 2.6-fold. The maximum stretching that we encountered was 3.6-fold. A large reduction of the apparent filament diameter was observed concomitantly. The observed mechanical properties therefore suggest that IFs may indeed function as mechanical shock absorbers in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号