首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.  相似文献   

2.
A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca2+ signalling and maintenance of Ca2+ homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca2+-ATPase, Na+, K+-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca2+ ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca2+ entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca2+ entry, and their formation and rebuilding have an important regulatory role in cellular Ca2+ homeostasis.  相似文献   

3.
H. Liß  E. W. Weiler 《Planta》1994,194(2):169-180
Procedures have been developed which allow the preparation of highly pure endoplasmic reticulum and plasma membrane from tendrils ofBryonia dioica. These and further membrane fractions were used to study vanadate-sensitive ATPase activity as well as Mg2+ATP-driven transport of45Ca2+. Calcium-translocating ATPases were detected in the endoplasmic reticulum, the plasma membrane and the mitochondrial fraction and characterized kinetically and with respect to the effects of various inhibitors. The endoplasmic-reticulum Ca2+-translocating ATPase was stimulated by KCl and was calmodulin-dependent. The plasma-membrane enzyme was not affected by these agents. These, as well as the inhibitor data, show that the Ca2+-translocating ATPases of the endoplasmic reticulum and the plasma membrane are distinctly different enzymes. Upon mechanical stimulation, the activities of the vanadate-sensitive K+, Mg2+-ATPase and the Ca2+-translocating ATPase(s) increased rapidly and transiently, indicating that increasing transmembrane proton and calcium fluxes are involved in the early stages of tendril coiling.Abbreviations CAM calmodulin - CCCP carbonylcyanidem-chlorophenylhydrazone - IC50 concentration giving 50% inhibition - PM plasma membrane - rER rough endoplasmic reticulum - sER smooth endoplasmic reticulum - FC fusicoccin - U3+U3 the two PM-rich upper phases obtained after phase partitioning of microsomal membranes The authors wish to thank the Deutsche Forschungsgemeinschaft, Bonn, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany (literature provision) for financial support.  相似文献   

4.
Summary In the present study we have investigated the presence and distribution of calreticulin in plant protoplasts. Calreticulin was purified from plant homogenates using a selective ammonium sulfate precipitation procedure developed for the purification of mammalian calreticulins and shown to bind calcium in45Ca2+ overlay assays. The protein was localized to plant cell endoplasmic reticulum by the indirect immunofluorescence staining of protoplasts with anti-calreticulin antibodies. No calreticulin was observed within large vacuoles. We conclude that calreticulin is present in the endoplasmic reticulum of plant cells, where, by analogy to the mammalian endoplasmic reticulum, it may play a major role in Ca2+ binding and storage.Abbreviations ER endoplasmic reticulum - SR sarcoplasmic reticulum - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

5.
This study is aimed to determine the role of calcium signaling evoked by the calcium-mobilizing agonist uridine-5′-triphosphate (UTP) and by the specific inhibitor of the endoplasmic reticulum calcium reuptake thapsigargin on caspase activation in human leukemia cell line HL-60. We have analyzed cytosolic free calcium concentration ([Ca2+]c) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric calcium indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with 10 μM UTP or 1 μM thapsigargin induced a transient increase in [Ca2+]c due to calcium release from internal stores. The stimulatory effect of UTP and thapsigargin on calcium signal was followed by a mitochondrial membrane depolarization. Our results also indicated that UTP and thapsigargin were able to increase the caspase-3 and -9 activities. The effect of UTP and thapsigargin on caspase activation was time dependent, reaching a maximal caspase activity after 60 min of stimulation. Loading of cells with 10 μM dimethyl BAPTA, an intracellular calcium chelator, for 30 min significantly reduced both UTP- or thapsigargin-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with 10 μM Ru360 for 30 min, a specific blocker of calcium uptake into mitochondria. The findings suggest that UTP- and thapsigargin-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca2+]c in human myeloid HL-60 cells.  相似文献   

6.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

7.
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20–50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9–35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.  相似文献   

8.
Bi-directional calcium (Ca2+) signaling between mitochondria and intracellular stores (endoplasmic/sarcoplasmic reticulum) underlies important cellular functions, including oxidative ATP production. In striated muscle, this coupling is achieved by mitochondria being located adjacent to Ca2+ stores (sarcoplasmic reticulum [SR]) and in proximity of release sites (Ca2+ release units [CRUs]). However, limited information is available with regard to the mechanisms of mitochondrial-SR coupling. Using electron microscopy and electron tomography, we identified small bridges, or tethers, that link the outer mitochondrial membrane to the intracellular Ca2+ stores of muscle. This association is sufficiently strong that treatment with hypotonic solution results in stretching of the SR membrane in correspondence of tethers. We also show that the association of mitochondria to the SR is 1) developmentally regulated, 2) involves a progressive shift from a longitudinal clustering at birth to a specific CRU-coupled transversal orientation in adult, and 3) results in a change in the mitochondrial polarization state, as shown by confocal imaging after JC1 staining. Our results suggest that tethers 1) establish and maintain SR–mitochondrial association during postnatal maturation and in adult muscle and 2) likely provide a structural framework for bi-directional signaling between the two organelles in striated muscle.  相似文献   

9.
Participation of different calcium-regulating mechanisms in the formation of intracellular calcium signals in rat primary sensory neurons was studied using two-wavelength fluorescent microscopy. Mitochondria were shown to be the most powerful intracellular calcium-regulating structures in the investigated neurons. These organelles were involved in the modulation of calcium signals induced either by Ca2+ entry from the extracellular medium or by Ca2+ release from endoplasmic reticulum (ER). Analysis of the mitochondrial calcium exchange showed that the efficiency of mitochondria depended on whether calcium entered the cytosol from ER or from the extracellular solution. Depletion of ER by activation of ryanodine-sensitive, inositol-3-phosphate-sensitive receptors of ER or by activation of the leak channels via the block of ATPases in ER activated the store-operated calcium entry from the extracellular medium to cytosol. The kinetics of the rising phase of these Ca2+ transients depended on the way of ER depletion. This allows suggesting the existence of different activation mechanisms for the studied signals. The block of the mitochondrial calcium uniporter resulted in a rapid recovery of the intracellular calcium concentration after the Ca2+ transient induced by store-operated calcium influx. We conclude that mitochondrial calcium uptake can prevent calcium-dependent inactivation of store-operated calcium channels.  相似文献   

10.
The intracellular calcium concentration ([Ca]i) regulates cell viability and contractility in myocardial cells. Elevation of the [Ca]i level occurs by entry of calcium ions (Ca2+) through voltage-dependent Ca2+ channels in the plasma membrane and release of Ca2+ from the sarcoplasmic reticulum. Calmidazolium chloride (CMZ), a subgroup II calmodulin antagonist, blocks L-type calcium channels as well as voltage-dependent Na+ and K+ channel currents. This study elaborates on the events that contribute to the cytotoxic effects of CMZ on the heart. We hypothesized that apoptotic cell death occurs in the cardiac cells through calcium accumulation, production of reactive oxygen species, and the cytochrome c-mediated PARP activation pathway. CMZ significantly increased the production of superoxide (O2•–) and nitric oxide (NO) as detected by FACS and confocal microscopy. CMZ induced mitochondrial damage by increasing the levels of intracellular calcium, lowering the mitochondrial membrane potential, and thereby inducing cytochrome c release. Apoptotic cell death was observed in H9c2 cells exposed to 25 μM CMZ for 24 h. This is the first report that elaborates on the mechanism of CMZ-induced cardiotoxicity. CMZ causes apoptosis by decreasing mitochondrial activity and contractility indices and increasing oxidative and nitrosative stress, ultimately leading to cell death via an intrinsic apoptotic pathway.  相似文献   

11.
Thomas J. Buckhout 《Planta》1983,159(1):84-90
Endoplasmic reticulum membranes were isolated from roots of garden cress (Lepidium sativum L. cv Krause) using differential and discontinuous sucrose gradient centrifugation. The endoplasmic reticulum fraction was 80% rough endoplasmic reticulum oriented with the cytoplasmic surface directed outward and contaminated with 12% unidentified smooth membranes and 8% mitochondria. Marker enzyme analysis showed that the activity for endoplasmic reticulum was enriched 2.4-fold over total membrane activity while no other organelle activity showed an enrichment. All evidence indicated that the fraction was composed of highly enriched endoplasmic reticulum membranes. Ca2+ uptake activity was measured using the filter technique described by Gross and Marmé (1978). The results of these experiments showed an ATP-dependent, oxalate-stimulated Ca2+ uptake into vesicles of the endoplasmic reticulum fraction. The majority of the transport activity was microsomal since specific inhibitors of mitochondrial Ca2+ transport (ruthenium red, LaCl3 and oligomycin) inhibited the activity by only 25%. Sodium azide showed no inhibition. The transport was likely directly coupled to ATP hydrolysis since there was no inhibition with carbonylcyanidem-chlorophenylhydrazone. The transport activity was specific for ATP showing only 36% and 29% of the activity with inosine diphosphate and guanosine 5′-triphosphate, respectively. The results indicate a Ca2+ transport function located on the endoplasmic reciculum of garden cress roots.  相似文献   

12.
The literature data on the role of synaptic mitochondria in the regulation of the cytosolic calcium level are contradictory. In the present paper calcium storage by mitochondria in rat brain synaptosomes using the fluorescent dye Rhod-2 has been investigated. The addition of 60 mM KCl increases Rhod-2 fluorescence. This effect is completely abolished by replacing K+ with Na+ or withdrawing Ca2+ from the incubation medium. A proton ionophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone, and a mixture of rotenone/oligomycin mitochondrial toxins cause a two-fold decrease in Rhod-2 fluorescence. Thapsigargin, an inhibitor of endoplasmic reticulum ATPase (1 μM), but not bafilomycin, an inhibitor of ATPase in synaptic vesicles (500 nM) also leads to a mitochondrial calcium influx. The addition of calcium to synaptosomes with the retained plasma membrane potential increased Rhod-2 fluorescence; however, this effect is insensitive to carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone. We have shown that mitochondria can serve as a calcium store in synaptosomes only in the case of a high cytosolic concentration of calcium.  相似文献   

13.
Close to the bases of the photoreceptive microvilli, arthropod photoreceptors contain a dense network of endoplasmic reticulum that is involved in the regulation of the intracellular calcium concentration, and in the biogenesis of the photoreceptive membrane. Here, we examine the role of the cytoskeleton in organizing this submicrovillar endoplasmic reticulum in honeybee photoreceptors. Immunofluorescence microscopy of taxol-stabilized specimens, and electron-microscopic examination of high-pressure frozen, freeze-substituted retinae demonstrate that the submicrovillar cytoplasm lacks microtubules. The submicrovillar region contains a conspicuous F-actin system that codistributes with the submicrovillar endoplasmic reticulum. Incubation of retinal tissue with cytochalasin B leads to depolymerization of the submicrovillar F-actin system, and to disorganization and disintegration of the submicrovillar endoplasmic reticulum, indicating that an intact F-actin cytoskeleton is required to maintain the architecture of this domain of the endoplasmic reticulum. We have also developed a permeabilized cell model in order to study the physiological requirements for the interaction of the endoplasmic reticulum with actin filaments. The association of submicrovillar endoplasmic reticulum with actin filaments appears to be independent of ATP, Ca2+ and Mg2+, suggesting a tight static anchorage.  相似文献   

14.
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria–endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.  相似文献   

15.
Ca2+ signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca2+ cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging.In mammalian cardiac myocytes, Ca2+ influx through L-type calcium channels in the sarcolemmal membrane triggers Ca2+ release from the nearby junctional sarcoplasmic reticulum to produce Ca2+ sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca2+]i transient arises from coordinated Ca2+ release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca2+] during the Ca2+ release process. Both local and global Ca2+ signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca2+].Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion – sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria.Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.  相似文献   

16.
Summary We have previously shown that inositol-1,4,5-trisphosphate (IP3) releases Ca2+ from an intracellular calcium store in permeabilized acinar cells of rat pancreas (H. Streb et al., 1983,Nature (London) 306:67–69). This observation suggests that IP3 might provide the missing link between activation of the muscarinic receptor and Ca2+ release from intracellular stores during stimulation. In order to localize the intracellular IP3-sensitive calcium pool, IP3-induced Ca2+ release was measured in isolated subcellular fractions. A total homogenate was prepared from acinar cells which had been isolated by a collagenase digestion method. Endoplasmic reticulum was separated from mitochondria, zymogen granules and nuclei by differential centrifugation. Plasma membranes and endoplasmic reticulum were separated by centrifugation on a sucrose step gradient or by precipitation with high concentrations of MgCl2. IP3-induced Ca2+ release per mg protein in the total homogenate was the same as in leaky cells and was sufficiently stable to make short separation procedures possible. In fractions obtained by either differential centrifugation at 7000×g, sucrose-density centrifugation, or MgCl2 precipitation there was a close correlation of IP3-induced Ca2+ release with the endoplasmic reticulum markers ribonucleic acid (r=0.96, 1.00, 0.91, respectively) and NADPH cytochromec reductase (r=0.63, 0.98, 090, respectively). In contrast, there was a clear negative correlation with the mitochondrial markers cytochromec oxidase (r=–0.64) and glutamate dehydrogenase (r=–0.75) and with the plasma membrane markers (Na++K+)-ATPase (r=–0.81) and alkaline phosphatase (r=–0.77) in all fractions analyzed. IP3-induced Ca2+ release was distributed independently of zymogen granule or nuclei content of the fractions as assessed by electron microscopy. The data suggest that inositol-1,4,5-trisphosphate releases Ca2+ from endoplasmic reticulum in pancreatic acinar cells.  相似文献   

17.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

18.
As gastrulation proceeds during sea urchin embryogenesis, primary mesenchyme cells (PMCs) fuse to form syncytial cables, within which calcium is deposited as CaCO3, and a pair of spicules is formed. Earlier studies suggested that calcium, previously sequestered by primary mesenchyme cells, is secreted and incorporated into growing spicules. We examined the effects of gadolinium ion (Gd3+), a Ca2+ channel blocker, on spicule formation. Gd3+ did not lead to a retardation of embryogenesis prior to the initiation of gastrulation and did not inhibit the ingression of PMCs from the blastula wall or their migration along the inner blastocoel surface. However, when embryos were raised in seawater containing submicromolar to a few micromolar Gd3+, of which levels are considered to be insufficient to block Ca2+ channels, a pair of triradiate spicules was formed asymmetrically. At 1–3 μmol/L Gd3+, many embryos formed only one spicule on either the left or right side, or embryos formed a very small second spicule. Induction of the spicule abnormality required the presence of Gd3+ specifically during late blastula stage prior to spicule formation. An accumulation or adsorption of Gd3+ was not detected anywhere in the embryos by X‐ray microanalysis, which suggests that Ca2+ channels were not inhibited. These results suggest that Gd3+ exerts an inhibitory effect on spicule formation through a mechanism that does not involve inhibition of Ca2+ channels.  相似文献   

19.
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca2 + signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca2 +-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca2 + transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca2 + from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca2 + homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca2 + signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca2 + homeostasis, thereby decreasing mitochondrial Ca2 + uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca2 + homeostasis and dynamics.  相似文献   

20.
The endoplasmic reticulum of most cell types mainly consists of an extensive network of narrow sheets and tubules. It is well known that an excessive increase of the cytosolic Ca2+ concentration induces a slow but extensive swelling of the endoplasmic reticulum into a vesicular morphology. We observed that a similar extensive transition to a vesicular morphology may also occur independently of a change of cytosolic Ca2+ and that the change may occur at a time scale of seconds. Exposure of various types of cultured cells to saponin selectively permeabilized the plasma membrane and resulted in a rapid swelling of the endoplasmic reticulum even before a loss of permeability barrier was detectable with a low-molecular mass dye. The structural alteration was reversible provided the exposure to saponin was not too long. Mechanical damage of the plasma membrane resulted in a large-scale transition of the endoplasmic reticulum from a tubular to a vesicular morphology within seconds, also in Ca2+-depleted cells. The rapid onset of the phenomenon suggests that it could perform a physiological function. Various mechanisms are discussed whereby endoplasmic reticulum vesicularization could assist in protection against cytosolic Ca2+ overload in cellular stress situations like plasma membrane injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号