首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat loss and hunting threaten bonobos (Pan paniscus), Endangered (IUCN) great apes endemic to lowland rainforests of the Democratic Republic of Congo. Conservation planning requires a current, data-driven, rangewide map of probable bonobo distribution and an understanding of key attributes of areas used by bonobos. We present a rangewide suitability model for bonobos based on a maximum entropy algorithm in which data associated with locations of bonobo nests helped predict suitable conditions across the species’ entire range. We systematically evaluated available biotic and abiotic factors, including a bonobo-specific forest fragmentation layer (forest edge density), and produced a final model revealing the importance of simple threat-based factors in a data poor environment. We confronted the issue of survey bias in presence-only models and devised a novel evaluation approach applicable to other taxa by comparing models built with data from geographically distinct sub-regions that had higher survey effort. The model’s classification accuracy was high (AUC = 0.82). Distance from agriculture and forest edge density best predicted bonobo occurrence with bonobo nests more likely to occur farther from agriculture and in areas of lower edge density. These results suggest that bonobos either avoid areas of higher human activity, fragmented forests, or both, and that humans reduce the effective habitat of bonobos. The model results contribute to an increased understanding of threats to bonobo populations, as well as help identify priority areas for future surveys and determine core bonobo protection areas.  相似文献   

2.
Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) diverged into distinct species approximately 1.7 million years ago when the ancestors of modern-day bonobo populations were separated by the Congo River. This geographic boundary separates the two species today and the associated ecological factors, including resource distribution and feeding competition, have likely shaped the divergent social behavior of both species. The most striking behavioral differences pertain to between group interactions in which chimpanzees behave aggressively towards unfamiliar conspecifics, while bonobos display remarkable tolerance. Several hypotheses attempt to explain how different patterns of social behavior have come to exist in the two species, some with specific genetic predictions, likening the evolution of bonobos to a process of domestication. Here, we utilize 73 ape genomes and apply linkage haplotype homozygosity and structure informed allele frequency differentiation methods to identify positively selected regions in bonobos since their split from a common pan ancestor to better understand the environment and processes that resulted in the behavioral differences observed today. We find novel evidence of selection in genetic regions that aid in starch digestion (AMY2) along with support for two genetic predictions related to self-domestication processes hypothesized to have occurred in the bonobo. We also find evidence for selection on neuroendocrine pathways associated with social behavior including the oxytocin, serotonin, and gonadotropin releasing hormone pathways.  相似文献   

3.
While investigating the genetic structure in wild bonobos,1 we realized that the widely accepted scenario positing that the Pleistocene appearance of the Congo River separated the common ancestor of chimpanzees (Pan troglodytes) and bonobos (P. paniscus) into two species is not supported by recent geographical knowledge about the formation of the Congo River. We explored the origin of bonobos using a broader biogeographical perspective by examining local faunas in the central African region. The submarine Congo River sediments and paleotopography of central Africa show that the Congo River has functioned as a geographical barrier for the last 34 million years. This evidence allows us to hypothesize that when the river was first formed, the ancestor of bonobos did not inhabit the current range of the species on the left bank of the Congo River but that, during rare times when the Congo River discharge decreased during the Pleistocene, one or more founder populations of ancestral Pan paniscus crossed the river to its left bank. The proposed scenario for formation of the Congo River and the corridor hypothesis for an ancestral bonobo population is key to understanding the distribution of great apes and their evolution.  相似文献   

4.
We present evidence for the consumption of a diurnal, arboreal, group living primate by bonobos. The digit of an immature black mangabey (Lophocebus aterrimus) was found in the fresh feces of a bonobo (Pan paniscus) at the Lui Kotale study site, Democratic Republic of Congo. In close proximity to the fecal sample containing the remains of the digit, we also found a large part of the pelt of a black mangabey. Evidence suggests that the Lui Kotale bonobos consume more meat than other bonobo populations and have greater variation in the mammalian species exploited than previously thought [Hohmann & Fruth, Folia primatologica 79:103–110]. The current finding supports Stanford's argument [Current Anthropology 39:399–420] that some differences in the diet and behavior between chimpanzees (P. troglodytes) and bonobos are an artefact of the limited number of bonobo study populations. If bonobos did obtain the monkey by active hunting, this would challenge current evolutionary models relating the intra‐specific aggression and violence seen in chimpanzees and humans to hunting and meat consumption [Wrangham, Yearbook of Physical Anthropology 42:1–30]. Am. J. Primatol. 71:171–174, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Despite several decades of research, there remains a lack of consensus on the extent to which bonobos are paedomorphic (juvenilized) chimpanzees in terms of cranial morphology. This study reexamines the issue by comparing the ontogeny of cranial shape in cross-sectional samples of bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) using both internal and external 3D landmarks digitized from CT scans. Geometric morphometric methods were used to quantify shape and size; dental-maturation criteria were used to estimate relative dental age. Heterochrony was evaluated using combined size-shape (allometry) and shape-age relationships for the entire cranium, the face, and the braincase. These analyses indicate that the bonobo skull is paedomorphic relative to the chimpanzee for the first principal component of size-related shape variation, most likely via a mechanism of postformation (paedomorphosis due to initial shape underdevelopment). However, the results also indicate that not all aspects of shape differences between the two species, particularly in the face, can be attributed to heterochronic transformation and that additional developmental differences must also have occurred during their evolution.  相似文献   

6.
We list the animal species, mushrooms and honey, which are consumed by bonobos (Pan paniscus)in the Ikela region (Lilungu), Republic of Zaire, and compare these data with those obtained from other populations of bonobos: Lomako, Yalosidi, and Wamba. Lilungu bonobos consume earthworms more regularly than bonobos do at other localities. They also eat larvae, termites, and ants, but they probably do not consume invertebrates as regularly as chimpanzees do. Lilungu bonobos ate a squirrel and a chiropteran. We report our detailed observations of bonobo foraging, feeding and manipulating foods, including washing some items and complicated handling operations. We note intra- and intergroup differences in the consumption of specific foods and in the way they are handled by the females.  相似文献   

7.
Chimpanzees (Pan troglodytes) groom in gatherings in which many individuals may be connected via multiple chains of grooming and they often exchange partners with each other. They sometimes groom another while receiving grooming; that is, one animal can play two roles (i.e., groomer and groomee) simultaneously. Although this feature of chimpanzees is notable from the viewpoint of the evolution of human sociality, information on our other closest living relative, the bonobo (Pan paniscus), is still lacking. In this study, I describe grooming interactions of bonobos at Wamba in the Luo Scientific Reserve, Democratic Republic of the Congo (DR Congo), with a particular focus on the formation of grooming gatherings. Like chimpanzees, the bonobos also performed mutual grooming (two individuals grooming each other simultaneously) and polyadic grooming (three or more individuals). However, unlike chimpanzees, these sessions lasted for only a short time. Bonobos rarely groomed another while receiving grooming. Because social grooming occurred not only in trees but also in open spaces, including treefall gaps, the conditions did not necessarily limit the opportunity to make multiple chains of grooming. However, bonobos also engaged in social grooming in different ways from chimpanzees; That is, many individuals were involved simultaneously at a site, in which they separated for dyadic grooming. Some cases clearly showed that bonobos preferred a third party not to join while grooming in a dyad, suggesting that bonobos have a preference for grooming in dyads and that immature individuals formed the preference that was shared among adults while growing up. Most members of the study group ranged together during the majority of the study period. Although bonobos show a fission–fusion grouping pattern, when group members frequently encounter one another on a daily basis, they may not be motivated to form multiple grooming chains at this site, as do chimpanzees.  相似文献   

8.
This paper aims at quantifying ontogenetic differences between bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) endocrania, using dental development as a timeline. We utilize a methodology based on smooth and invertible deformations combined with a metric of “currents” that defines a distance between endocranial surfaces and does not rely on correspondence between landmarks. This allows us to perform a temporal surface regression that estimates typical endocranial ontogenetic trajectories separately for bonobos and chimpanzees. We highlight non-linear patterns of endocranial ontogenetic change and significant differences between species at local anatomical levels rather than considering the endocranium as a uniform entity. A spatiotemporal registration permits the quantification of inter-species differences decomposed into a morphological deformation (accounting for size and shape differences independently of age) and a time warp (accounting for changes in the dynamics of development). Our statistical simulations suggest that patterns of endocranial volume (EV) increase may differ significantly between bonobos and chimpanzees, with an earlier phase of a relatively rapid increase (preferentially at some endocranial subdivisions) in the former and a much later phase of relatively rapid increase in the latter. As a consequence, the chimpanzee endocranium appears to reach its adult size later. Moreover, the time warp indicates that juvenile bonobos develop much slower than juvenile chimpanzees, suggesting that inter-specific ontogenetic shifts do not only concern EV increase, but also the rate of shape changes over time. Our method provides, for the first time, a quantitative estimation of inter-specific ontogenetic shifts that appear to differentiate non-linearly.  相似文献   

9.
In long–lived social mammals such as primates, individuals can benefit from social bonds with close kin, including their mothers. In the patrilocal chimpanzee (Pan troglodytes spp.) and bonobo (Pan paniscus), sexually mature males reside and reproduce in their natal groups and can retain post-dependency bonds with their mothers, while immatures of both sexes might also have their paternal grandmothers available. However, quantitative information on the proportion of males and immatures that co-reside with both types of these close female relatives is limited for both species. Combining genetic parentage determination and group composition data from five communities of wild chimpanzees and three communities of wild bonobos, we estimated the frequency of co-residence between (1) mature males and their mothers, and (2) immature males and females and their paternal grandmothers. We found that adult males resided twice as frequently with their mothers in bonobos than in chimpanzees, and that immature bonobos were three times more likely to possess a living paternal grandmother than were immature chimpanzees. Patterns of female and male survivorship from studbook records of captive individuals of both species suggest that mature bonobo females survive longer than their chimpanzee counterparts, possibly contributing to the differences observed in mother–son and grandmother–immature co-residency levels. Taking into account reports of bonobo mothers supporting their sons'' mating efforts and females sharing food with immatures other than their own offspring, our findings suggest that life history traits may facilitate maternal and grandmaternal support more in bonobos than in chimpanzees.  相似文献   

10.
The endangered great ape, Pan paniscus (bonobo) has the smallest range of the African apes. Virtually nothing is known about the genetic diversity or genetic structure of this species, while substantial amounts of polymorphism have been reported for the bonobo’s widespread congener, the chimpanzee (P. troglodytes). Given its restricted range, what is the extent of genetic variation in the bonobo relative to the chimpanzee, and is the bonobo genetically depauperate? To investigate patterns of genetic polymorphism, bonobos of wild origin were genotyped for 28 microsatellite loci. The mean number of alleles per locus (5.2) and the mean observed heterozygosity (0.52) in bonobos were similar to variation observed in a wild chimpanzee community (P. t. schweinfurthii). The rarer bonobo is not genetically depauperate and may have genetic diversity comparable to the eastern chimpanzee subspecies. Bonobos have approximately 55% of the allelic diversity and 66% of the observed heterozygosity exhibited by all three chimpanzee subspecies sampled across equatorial Africa. Resampling techniques were used to quantify the effects of sample size differences and number and choice of loci between bonobos and chimpanzees. The examination of these variables underscores their importance in accurately interpreting interspecific comparisons of diversity estimates.  相似文献   

11.
The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the “continuity versus discontinuity” discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother–infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.  相似文献   

12.
A primate's body mass covaries with numerous ecological, physiological, and behavioral characteristics. This versatility and potential to provide insight into an animal's life has made body mass prediction a frequent and important objective in paleoanthropology. In hominin paleontology, the most commonly employed body mass prediction equations (BMPEs) are “mechanical” and “morphometric”: uni- or multivariate linear regressions incorporating dimensions of load-bearing skeletal elements and stature and living bi-iliac breadth as predictor variables, respectively. The precision and accuracy of BMPEs are contingent on multiple factors, however, one of the most notable and pervasive potential sources of error is extrapolation beyond the limits of the reference sample. In this study, we use a test sample requiring extrapolation—56 bonobos (Pan paniscus) from the Lola ya Bonobo sanctuary in Kinshasa, Democratic Republic of the Congo—to evaluate the predictive accuracy of human-based morphometric BMPEs. We first assess systemic differences in stature and bi-iliac breadth between humans and bonobos. Due to significant differences in the scaling relationships of body mass and stature between bonobos and humans, we use panel regression to generate a novel BMPE based on living bi-iliac breadth. We then compare the predictive accuracy of two previously published morphometric equations with the novel equation and find that the novel equation predicts bonobo body mass most accurately overall (41 of 56 bonobos predicted within 20% of their observed body mass). The novel BMPE is particularly accurate between 25 and 45 kg. Given differences in limb proportions, pelvic morphology, and body tissue composition between the human reference and bonobo test samples, we find these results promising and evaluate the novel BMPE's potential application to fossil hominins.  相似文献   

13.
For some traits, the human genome is more closely related to either the bonobo or the chimpanzee genome than they are to each other. Therefore, it becomes crucial to understand whether and how morphostructural differences between humans, chimpanzees and bonobos reflect the well known phylogeny. Here we comparatively investigated intra and extra labyrinthine semicircular canals orientation using 260 computed tomography scans of extant humans (Homo sapiens), bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Humans and bonobos proved more similarities between themselves than with chimpanzees. This finding did not fit with the well established chimpanzee – bonobo monophyly. One hypothesis was convergent evolution in which bonobos and humans produce independently similar phenotypes possibly in response to similar selective pressures that may be associated with postural adaptations. Another possibility was convergence following a “random walk” (Brownian motion) evolutionary model. A more parsimonious explanation was that the bonobo-human labyrinthine shared morphology more closely retained the ancestral condition with chimpanzees being subsequently derived. Finally, these results might be a consequence of genetic diversity and incomplete lineage sorting. The remarkable symmetry of the Semicircular Canals was the second major finding of this article with possible applications in taphonomy. It has the potential to investigate altered fossils, inferring the probability of post-mortem deformation which can lead to difficulties in understanding taxonomic variation, phylogenetic relationships, and functional morphology.  相似文献   

14.
Intergroup interactions in primates vary from nonagonistic to severely aggressive. Food resources and fertile females cause intergroup aggression when groups defend resources and mates from other groups. Peaceful intermingling during intergroup encounters is rare but has been reported in several primates, including bonobos (Pan paniscus). Although intergroup encounters in bonobos occur at both nonprovisioned and provisioned sites, provisioning may be one factor responsible for frequent intergroup encounters. We studied intergroup encounters between one bonobo group (PE) and its neighboring groups, one semihabituated and two habituated groups, under nonprovisioned conditions in 2010–2015 at Wamba, Democratic Republic of Congo. We examined whether fruit abundance and females with sexual swellings influenced encounter frequency. PE group encountered the other groups on 7.1 days (mean, range: 0–19) per month. Up to four different groups met simultaneously at one location. Encounter frequency was highest around the yearly peak in fruit abundance, suggesting that reduced food competition is linked to increased encounter frequency. During periods of relatively low fruit abundance, the probability of an encounter was higher when a higher number of adult females with maximum sexual swellings were present, suggesting that the attractiveness of females with sexual swellings promoted group encounters during periods of relatively low fruit abundance. These findings suggest that both competition for food and the availability of females with sexual swellings influence encounter frequency in bonobos.  相似文献   

15.
We list the animal species, mushrooms and honey, which are consumed by bonobos (Pan paniscus)in the Ikela region (Lilungu), Republic of Zaire, and compare these data with those obtained from other populations of bonobos: Lomako, Yalosidi, and Wamba. Lilungu bonobos consume earthworms more regularly than bonobos do at other localities. They also eat larvae, termites, and ants, but they probably do not consume invertebrates as regularly as chimpanzees do. Lilungu bonobos ate a squirrel and a chiropteran. We report our detailed observations of bonobo foraging, feeding and manipulating foods, including washing some items and complicated handling operations. We note intra- and intergroup differences in the consumption of specific foods and in the way they are handled by the females.  相似文献   

16.
Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.  相似文献   

17.
A positive interaction is any interaction between individuals of the same or different species (mutualism) that provides a benefit to both partners such as increased fitness. Here we focus on seed dispersal mutualism between an animal (bonobo, Pan paniscus) and a plant (velvet tamarind trees, Dialium spp.). In the LuiKotale rainforest southwest of Salonga National Park, Democratic Republic of Congo, seven species of the genus Dialium account for 29.3% of all trees. Dialium is thus the dominant genus in this forest. Dialium fruits make up a large proportion of the diet of a habituated bonobo community in this forest. During the 6 months of the fruiting season, more than half of the bonobos’ feeding time is devoted to Dialium fruits. Furthermore, Dialium fruits contribute a considerable proportion of sugar and protein to bonobos’ dietary intake, being among the richest fruits for these nutrients. Bonobos in turn ingest fruits with seeds that are disseminated in their feces (endozoochory) at considerable distances (average: 1.25 km after 24 hr of average transit time). Endozoochory through the gut causes loss of the cuticle protection and tegumentary dormancy, as well as an increase in size by water uptake. Thus, after gut passage, seeds are better able to germinate. We consider other primate species as a potential seed disperser and conclude that Dialium germination is dependent on passage through bonobo guts. This plant–animal interaction highlights positive effects between two major organisms of the Congo basin rainforest, and establishes the role of the bonobo as an efficient disperser of Dialium seeds. Am. J. Primatol. 75:394‐403, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The timing of tooth mineralization in bonobos (Pan paniscus) is virtually uncharacterized. Analysis of these developmental features in bonobos and the possible differences with its sister species, the chimpanzee (P. troglodytes), is important to properly quantify the normal ranges of dental growth variation in closely related primate species. Understanding this variation among bonobo, chimpanzee and modern human dental development is necessary to better contextualize the life histories of extinct hominins. This study tests whether bonobos and chimpanzees are distinguished from each other by covariance among the relative timing and sequences of tooth crown initiation, mineralization, root extension, and completion. Using multivariate statistical analyses, we compared the relative timing of permanent tooth crypt formation, crown mineralization, and root extension between 34 P. paniscus and 80 P. troglodytes mandibles radiographed in lateral and occlusal views. Covariance among our 12 assigned dental scores failed to statistically distinguish between bonobos and chimpanzees. Rather than clustering by species, individuals clustered by age group (infant, younger or older juvenile, and adult). Dental scores covaried similarly between the incisors, as well as between both premolars. Conversely, covariance among dental scores distinguished the canine and each of the three molars not only from each other, but also from the rest of the anterior teeth. Our study showed no significant differences in the relative timing of permanent tooth crown and root formation between bonobos and chimpanzees. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Poaching and habitat destruction in the Congo Basin threaten African great apes including the bonobo (Pan paniscus), chimpanzees (Pan troglodytes), and gorillas (Gorilla spp.) with extinction. One way to combat extinction is to reintroduce rescued and rehabilitated apes and repopulate native habitats. Reintroduction programs are only successful if they are supported by local populations. Ekolo ya Bonobo, located in Equateur province of the Democratic Republic of Congo (DRC), is the world's only reintroduction site for rehabilitated bonobos. Here we assess whether children, of the Ilonga‐Pôo, living adjacent to Ekolo ya Bonobo demonstrate more pro‐ape conservation attitudes than children living in, Kinshasa, the capital city. We examined children's attitudes toward great apes because children are typically the focus of conservation education programs. We used the Great Ape Attitude Questionnaire to test the Contact Hypothesis, which posits that proximity to great ape habitat influences pro‐conservation attitudes toward great apes. Ilonga‐Pôo children who live in closer contact with wild bonobos felt greater responsibility to protect great apes compared to those in Kinshasa who live outside the natural habitat of great apes. These results suggest that among participants in the DRC, spatial proximity to a species fosters a greater sense of responsibility to protect and conserve. These results have implications for the successful implementation of great ape reintroduction programs in the Congo Basin. The data analyzed in this study were collected in 2010 and therefore provide a baseline for longitudinal study of this reintroduction site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号