首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物法获取乙醇与丁醇过程中有机溶剂的毒性是生产菌重要环境胁迫因素之一,且当有机溶剂超过一定浓度时便会抑制微生物的生长,甚至引起微生物的死亡,因此提高工业微生物的有机溶剂耐受性对工业生产具有重要的意义。对微生物乙醇及丁醇耐受机制的研究可为选育具有较强溶剂耐受菌提供理论基础。本文系统介绍了微生物耐受乙醇与丁醇的机制,并对其在生物燃料生产及生物转化中面临的机遇与挑战等问题进行简要的评述。  相似文献   

2.
利用微生物发酵进行能源物质的生产是开发新型可再生能源的重要手段。在工业化生产过程中,由于高温、渗透压及产物毒性效应等不良环境因素,常导致生产菌株的多种重要生理功能发生改变,从而降低产物转化效率。因此,获取高产及抗逆性强的优良菌株是提高生物燃料工业化进程的重要途径之一。本文以乙醇与丁醇生产菌株为研究对象,系统阐述当前提高生产菌株发酵性能的各种育种手段,并对其在工业化生产过程中所面临的机遇与挑战进行简要评述。  相似文献   

3.
Fermentative production of butanol for use as a biofuel or chemical feedstock is regarded as a promising renewable technology that reduces greenhouse gas emissions and has the potential to become a substitute for non-sustainable chemical production route. However, butanol toxicity to the producing microbes remains a barrier to achieving sufficiently high titers for cost-effective butanol fermentation and recovery. Investigations of the external stress of high butanol concentration on butanol-producing microbial strains will aid in developing improved microbes with increased tolerance to butanol. With currently available molecular tool boxes, researchers have aimed to address and understand how butanol affects different microbes. This review will cover the individual organism’s inherent responses to surrounding butanol levels, and the collective efforts by researchers to improve production and tolerance. The specific microorganisms discussed here include the native butanol producer Clostridium species, the fermentation industrial model Saccharomyces cerevisiae and the photosynthetic cyanobacteria, the genetic engineering workhorse Escherichia coli, and also the butanol-tolerant lactic acid bacteria that utilize diverse substrates. The discussion will help to understand the physiology of butanol resistance and to identify specific butanol tolerance genes that will lead to informed genetic engineering strategies for new strain development.  相似文献   

4.
一体化生物加工过程(Consolidated bioprocessing,CBP)是在一个生物反应器中完成水解酶生产、酶解、微生物发酵等多步生物过程的工艺。因其过程步骤简单、成本低,被认为是生产二代生物燃料最具发展前景的工艺。然而,由于木质纤维素降解与丁醇合成路径的复杂性,鲜有天然微生物可以直接利用木质纤维素合成丁醇。随着合成生物学技术的发展,在纤维素降解梭菌中引入丁醇合成途径,可以使单菌利用木质纤维素直接合成丁醇。但是该策略存在菌株代谢负荷重、丁醇产量低等问题。而混菌策略可以通过不同菌株的劳动分工,使单菌代谢负担得到缓解,因此进一步提高了丁醇合成效率。文中从单菌策略和混菌策略分析了近年来一体化生物加工过程利用木质纤维素合成丁醇的相关研究进展,为生物丁醇以及其他生物燃料的一体化生物加工过程研究提供借鉴。  相似文献   

5.
Fermentative butanol production by Clostridia   总被引:1,自引:0,他引:1  
Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.  相似文献   

6.
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone–butanol–ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.  相似文献   

7.
聚羟基脂肪酸酯(PHA)是一类由微生物合成的、生物可再生、生物可降解、具有多种材料学性能的高分子聚合物,在很多领域有着广泛的应用前景。以下从辅酶工程、代谢工程、微氧生产等方面综述了微生物法生产PHA的研究进展,并对利用PHA合成基因提高基因工程菌的代谢潜能进行了讨论。  相似文献   

8.
Recently, butanols (1-butanol, 2-butanol and iso-butanol) have generated attention as alternative gasoline additives. Butanols have several properties favorable in comparison to ethanol, and strong interest therefore exists in the reconstruction of the 1-butanol pathway in commonly used industrial microorganisms. In the present study, the biosynthetic pathway for 1-butanol production was reconstructed in the yeast Saccharomyces cerevisiae. In addition to introducing heterologous enzymes for butanol production, we engineered yeast to have increased flux toward cytosolic acetyl-CoA, the precursor metabolite for 1-butanol biosynthesis. This was done through introduction of a plasmid-containing genes for alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA synthetase (ACS), and acetyl-CoA acetyltransferase (ERG10), as well as the use of strains containing deletions in the malate synthase (MLS1) or citrate synthase (CIT2) genes. Our results show a trend to increased butanol production in strains engineered for increased cytosolic acetyl-CoA levels, with the best-producing strains having maximal butanol titers of 16.3 mg/l. This represents a 6.5-fold improvement in butanol titers compared to previous values reported for yeast and demonstrates the importance of an improved cytosolic acetyl-CoA supply for heterologous butanol production by this organism.  相似文献   

9.
Aims: Poor butanol tolerance of solventogenic stains directly limits their butanol production during industrial‐scale fermentation process. This study was performed to search for micro‐organisms possessing elevated tolerance to butanol. Methods and Results: Two strains, which displayed higher butanol tolerance compared to commonly used solventogenic Clostridium acetobutylicum, were isolated by evolution and screening strategies. Both strains were identified as lactic acid bacteria (LAB). On this basis, a LAB culture collection was tested for butanol tolerance, and 60% of the strains could grow at a butanol concentration of 2·5% (v/v). In addition, an isolated strain with superior butanol tolerance was transformed using a certain plasmid. Conclusions: The results indicate that many strains of LAB possessed inherent tolerance of butanol. Significance and Impact of the Study: This study suggests that LAB strains may be capable of producing butanol to elevated levels following suitable genetic manipulation.  相似文献   

10.
工业微生物及其产品广泛用于工业、农业、医药等诸多领域,相关产业在国民经济中具有举足轻重的地位。高效的菌株是提高生产效率的核心,而先进发酵技术和仪器平台对充分开发菌株代谢潜能也很重要。近年来,工业微生物领域的研究取得了快速进展,人工智能、高效基因组编辑技术和合成生物学技术逐渐广泛使用,相关产业应用也在不断扩展。为进一步促进工业微生物在生物制造等领域的应用,《生物工程学报》特组织出版专刊,从微生物菌株的多样性和生理代谢、菌株改造技术、发酵过程优化和放大,高通量微液滴培养装备开发以及工业微生物应用等方面,分别阐述目前的研究进展,并展望未来的发展趋势,为促进工业微生物及生物制造等产业的发展奠定基础。  相似文献   

11.
Highly butanol‐tolerant strains have always been attractive because of their potential as microbial hosts for butanol production. However, due to the amphiphilic nature of 1‐butanol as a solvent, the relationship between the cell surface hydrophobicity and butanol resistance remained ambiguous to date. In this work, the quantitatively estimated cell surface hydrophobicity of 74 Lactic acid bacteria strains were juxtaposed to their tolerance to various butanol concentrations. The obtained results revealed that the strains’ hydrophobicity was inversely proportional to their butanol tolerance. All highly butanol‐resistant strains were hydrophilic (cell surface hydrophobicity<1%), whereas the more hydrophobic the strains were, the more sensitive to butanol they were. Furthermore, cultivation at increasing butanol concentrations showed a clear tendency to decrease the level of hydrophobicity in all tested organisms, thus suggesting possible adaptation mechanisms. Purposeful reduction of cell surface hydrophobicity (by removal of S‐layer proteins from the cell envelope) also led to an increase of butanol resistance. Since the results covered 23 different Lactic acid bacteria species of seven genera, it could be concluded that regardless of the species, the lower degree of cells’ hydrophobicity clearly correlates with the higher level of butanol tolerance.  相似文献   

12.
高浓度丁醇耐受菌株是丁醇异源重组生产的关键因素.本研究对不同环境中耐受丁醇的微生物进行筛选,从自然环境中分离得到两株能够耐受高浓度丁醇的菌株,分别命名为btpz-4-1和btpz-6-3,它们耐受丁醇的浓度达到了25 g/L.通过分子标记物16S rDNA的鉴定以及分子系统进化树的分析,btpz-4-1被鉴定为Lactobacillus mucosae,btpz-6-3被鉴定为Pediococcus pentosaceus.同时,对它们的生理特性进行研究,结果显示btpz-4-1和btpz-6-3的最适生长温度分别为45℃和42℃,最适生长pH分别为6.0和6.5.  相似文献   

13.
14.
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass—either from dedicated crops or from municipal/industrial solid wastes—into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.  相似文献   

15.
The assessment of microorganisms in respect to human health is an important step for the introduction of new natural and genetically modified production strains to biotechnology. This report outlines the potential hazards posed by industrial microorganisms, important considerations related to pathogenicity, such as routes and portals of entry into the human body, mechanisms of spread of biological material and a definition of pathogenicity.Furthermore the most important steps in the assessment of pathogenicity of unknown strains are described. A short overview on characterization and in vitro and in vivo tests is presented. The hazard related to allergens and toxic metabolites is reviewed and the choice of methods and the handling of strains with unknown potential are discussed.  相似文献   

16.
Clostridial acetone/butanol fermentation used to rank second only to ethanol fermentation by yeast in its scale of production and thus is one of the largest biotechnological processes known. Its decline since about 1950 has been caused by increasing substrate costs and the availability of much cheaper feedstocks for chemical solvent synthesis by the petrochemical industry. The so-called oil crisis in 1973 led to renewed interest in novel fermentation and product recovery technologies as well as in the metabolism and genetics of the bacterial species involved. As a consequence, almost all of the enzymes leading to solvent formation are known, their genes have been sequenced (in fact, Clostridium acetobutylicum has been recently included in the microbial genome sequencing project), the regulatory mechanisms controlling solventogenesis have begun to emerge and recombinant DNA techniques have been developed for these clostridia to construct specific production strains. In parallel, cheap agricultural-waste-based feedstocks have been exploited for their potential as novel substrates, continuous culture methods have been successfully established and new on-line product recovery technologies are now available, such as gas stripping, liquid/liquid extraction, and membrane-based methods. In combination with these achievements, a reintroduction of acetone/butanol fermentation on an industrial scale seems to be economically feasible, a view that is supported by a new pilot plant in Austria recently coming into operation. Received: 18 December 1997 / Received revision: 27 January 1998 / Accepted: 27 January 1998  相似文献   

17.
Summary The use of microorganisms in biotechnology is an important economic area of interest in Brazil, especially the use of Saccharomyces cerevisiae in the baking and alcohol fermentation industries. Dimorphism in S. cerevisiae (cell morphology alterations from budding cells to filamentous structures) has been observed in conditions of nitrogen and carbon deprivation and in the presence of fusel alcohols. This can be described as a defense mechanism that allows the yeast to forage for nutrients through cell elongation, hyphal formation and invasive growth. In this work fifteen industrial strains of S. cerevisiae (including haploid and diploid strains) isolated from the fermentative process for alcohol production were characterized for filamentation on solid culture media under growth conditions of carbon- and nitrogen-deprivation and in the presence of fusel alcohols. The majority of strains showed filamentation induced by isoamyl alcohol, butanol, isopropanol and isobutanol, but not by methanol. In rich medium (YEPD), both haploid and diploid strains showed invasive growth, although this kind of filamentous growth was more common in haploid strains. Similar results were observed when fructose or mannose was used as the sole carbon source. In nitrogen-deficient medium (SLAD) the strains did not filament. The results obtained indicate that the filamentation induced by higher alcohols and carbon deprivation (specially carbon) is a common process in industrial strains of S. cerevisiae contributing towards their maintenance/survival in adverse conditions.  相似文献   

18.
脱落酸作为一种抑制生长的植物激素,是平衡植物内源激素和调节生长代谢的关键因子。脱落酸具有提高作物抗旱耐盐、减少果实褐变的作用,同时可降低疟疾发病率、刺激胰岛素分泌,因此在农业和医药领域有着广阔的应用前景。相较于传统的植物提取法和化学合成法,利用微生物合成脱落酸是一种经济、可持续的来源方式。目前利用天然微生物如灰葡萄孢霉菌、蔷薇色尾孢菌等合成脱落酸的研究已经取得了诸多进展,而脱落酸的异源微生物合成研究相对较少。酿酒酵母、解脂耶氏酵母、大肠杆菌等工程菌株作为天然产物异源合成的常用宿主,具有遗传背景清晰、易于操作、便于工业化生产等优势,因此利用微生物异源合成脱落酸是一种更具潜力的生产方式。本文着重从底盘细胞的选择、关键酶的筛选与表达强化、辅因子的调节、增强前体供应及促进脱落酸外排5个方面对微生物异源合成脱落酸的研究进行综述。最后,对该领域的未来发展方向进行了展望。  相似文献   

19.
Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity.  相似文献   

20.
Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker’s strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait—a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号