首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

2.
Abstract. Vertical distribution of zooplankton in the upper1000 m was studied from the south-east Arabian Sea in orderto determine the variations in zooplankton at different depths.The distribution and migration patterns of calanoid copepodspecies were given special attention. The mean zooplankton standingstock in the upper 1000 m was 2.1 g dry Wt m–2, of which97.7% was concentrated in the upper 400 m. Herbivores were generallymore abundant at all depths, but did not predominate. An increasein zooplankton at night occurred in the upper 200 m, as wellas at the 600–1000 m stratum. The maximum diversity ofcalanoid copepods also coincided with these two depths. Basedon vertical ranges, the calanoid copepod species were assignedto three groups: (i) species occurring predominantly in theepipelagic layer and forming the bulk of the calanoids; (ii)relatively sparser deeper living species confined below 200m; and (iii) species occurring throughout the water column.Some amount of vertical niche separation among congeneric specieswas indicated. While some species showed active migration, agood number of species were non- migratory.  相似文献   

3.
The diurnal vertical distribution of a large number of speciesof zooplankton, icbthyoplankton and micronekton were determinedin the top 150 m in three locations in the Shelf Water, on theNova Scotia Shelf, and Slope and on Georges Bank during springand fall periods. Species were categorized as to their trophiclevel and their type of diurnal migration behaviour. The influenceof temperature, salinity, and water density on the diurnal verticaldistribution of the species was examined. Temperature was foundto have the greatest influence on the distribution of the largestnumber of species. Diurnal migration behavior of the same speciesin Shelf and Slope water and at different times of the yearwas examined. Results showed that species changed their behaviorin the two water masses, while some species changed their migrationbehavior at different times of the year. During the night inApril the most abundant copepod species, Calanus finmarchicus,making up about 80% of the biomass, was found concentrated abovethe thermocline and the main chlorophyll layer. The majorityof the less abundant species of copepods were found below thethermocline and the chlorophyll layer. At night in August thetwo most abundant copepod species, Centropoger typicus and Paracalanusparvus, making up at least 80% of the zooplankton biomass, werealso concentrated above the thermocline and the main chlorophyllLayer. Three species of copepods were concentrated at the depthof the main chlorophyll layer and two species were concentratedbelow the chlorophyll layer and thermocline. The vertical distributionof other zooplankton and ichthyoplankton species was examinedin relation to the thermocline and chlorophyll layer. Relationshipsbetween concentrations of six species of fish larvae and allspecies of copepods in the same samples showed a general increasein the numbers of larvae m–3 as the numbers of copepodsm–3 increased in a range of 500–4000 m–3.However, the concentration of Merluccius bilinearis decreasedas the concentration of copepods exceeded 4000 m–3 suggestingthat high concentrations of copepods may not be a favourableenvironment for the larvae.  相似文献   

4.
Ratios of GDH activity: NH4+ excretion and ETS activity: oxygenconsumption were measured in western Gulf of Mexico zooplanktonand averaged 18.7 ? 4.3 and 2.65 ? 0.55, respectively. Theseratios were used to estimate NH4+ excretion and respirationrates of two natural zooplankton assemblages sampled quantitativelyfor GDH and ETS activity with a Multiple Opening and ClosingNet and Environmental Sensing System (MOCNESS). Greater than80% of the total GDH and ETS activity 0–200 m was concentratedin depth strata above the chlorophyll maximum, suggesting astrong zooplankton-phytoplankton grazing interaction. GDH activityper unit of zooplankton protein biomass was 3-fold greater inthe upper 100 m than between 100 – 200 m, while ETS activityper unit of zooplankton protein biomass showed no consistentpattern with increasing depth. O:N metabolic quotients wereestimated for the zooplankton sampled with the MOCNESS by ratioingGDH-excretion and ETS-respiratory by atoms. Lowest O:N quotientsoccurred in depth strata above the chlorophyll maximum, suggestinga predominance of protein-based grazing and/or predation. 1Contribution No. 81-013 from the Bigelow Laboratory for OceanSciences  相似文献   

5.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

6.
Carbon dynamics in the 'grazing food chain' of a subtropical lake   总被引:1,自引:0,他引:1  
Studies were conducted over a 13 month period at four pelagicsites in eutrophic Lake Okeechobee, Florida (USA), in orderto quantify carbon (C) uptake rates by size-fractionated phytoplankton,and subsequent transfers of C to zooplankton. This was accomplishedusing laboratory 14C tracer methods and natural plankton assemblages.The annual biomass of picoplankton (<2 µm), nanoplankton(2–20 µm) and microplankton (<20 µm averaged60, 389 and 100 µg C 1–1 respectively, while correspondingrates of C uptake averaged 7, 51 and 13 µg C1–1h–1. The biomass of microzooplankton (40–200 µm)and macrozooplankton (<200 µm averaged 18 and 60 µgC 1–1, respectively, while C uptake rates by these herbivoregroups averaged 2 and 3 µg C 1–1 h–1. Therewere no strong seasonal patterns in any of the plankton metrics.The ratio of zooplankton to phytoplankton C uptake averaged7% over the course of the study. This low value is typical ofthat observed in eutrophic temperate lakes with small zooplanktonand large inedible phytoplankton, and indicates ineffectiveC transfer in the grazing food chain. On a single occasion,there was a high density (<40 1–1) of Daphnia lumholrzii,a large-bodied exotic cladoceran. At that time, zooplanktoncommunity C uptake was <20 µg C 1–1 h–1and the ratio of zooplankton to phytoplankton C uptake was near30%. If D.lumholrzii proliferates in Lake Okeechobee and theother Florida lakes where it has recently been observed, itmay substantially alter planktonic C dynamics.  相似文献   

7.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

8.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

9.
A persistent large-scale cross-shelf gradient in zooplanktonbiomass >1050 µm was evident off south-western NovaScotia during annual spring surveys between 1985 and 1987, withrelatively low levels inshore and higher levels offshore. Conversely,the abundance of the tentaculate ctenophore Pleurobrachia pileuswas the greatest inshore, and distributed reciprocally to zooplankton>1050 µm. The principle prey of both adult ctenophoresand post-larval cod is zooplankton >1050 µm (primarilycalanoid copepods), and cod growth rates are strongly influencedby prey biomass. Ctenophore predation appears to have been responsiblefor the low nearshore zooplankton biomass, whereas the influenceof hydrographic factors on the zooplankton gradient was minimal.On a smaller scale, persistent, abrupt changes in zooplanktonbiomass >1050 µm and ctenophore density existed 3–30km from shore, in contrast to linear gradients in water density(1) during a 5 week sampling period in spring 1987. Ctenophoreswere confined to depths <55 m and zooplankton >1050 µmpredominantly occurred at depths >55 m. High concentrationsof chlorophyll and phaeopigment were evident at depths <55m also suggesting intense predation by ctenophores on largeherbivores. The relatively high proportion of smaller zooplankton(153–308 –m) in the nearshore is also consistentwith the predation hypothesis. The reduced growth experiencedby post-larval cod inshore appears generated by ctenophore predationof a common prey resource.  相似文献   

10.
The vertical disthbution of chlorophyll, zooplankton and physicalstructure were measured using a pumping system and CTD on twocruises in the Gulf of Maine during June and September 1982.The vertical distribution of chlorophyll was closely relatedto the density structure of the water column. In waters witha pronounced pycnocline subsurface chiorphyll maxima (SCM) werelocated at or just above the pycnocline. Chlorophyll concentrationswere maximal in the surface waters at those stations sampledin June where the pycnocline was not well defined. The relationshipbetween the zooplankton and chlorophyll distribution differedbetween cruises. In June, the zooplankton, particularly post-naupliarcopepods, were associated with the depth of the chlorophyllmaxirnum, while in September the post-naupliar copepods weremost abundant in the surface waters above the SCM at the stratifiedstations. During the September cruise we observed that the copepodnauplii were most abundant at the depth of the SCM, and thatthe larger protozoans (>35 µm) were most abundant atdepths of 55–85 m, which were well below the SCM and pycnocline. *Bigelow Laboratory for Ocean Sciences Contribution No. 83025  相似文献   

11.
In Great South Bay, nanoplankton, (<20 sµm) accountedfor the largest fraction (56%) of zooplankton glutamate dehydrogenase(GDH) activity over a one year period. Microzooplankton (20–200µm) and macrozooplankton (>200 µm) accountedfor 20% and 24%, respectively. Total zooplankton ammonium regenerationin Great South Bay could account for 74% of the ammonium requirementby phytoplankton in winter, but in summer when phytoplanktondemand was greater, and zooplankton population was low, it suppliedless than 5%. This study suggests that the smallest zooplanktonfraction, less than 20 µm, can be the most important asregards nitrogen regeneration in estuarine environments. MacrozooplanktonGDH activity in Great South Bay ranged from 0.18 mg atoms NH+4-Nm–3 d–1 in winter to 3.34 mg atoms NH+4-N m–3d–1 in spring. Over an annual period, the averaged GDH/excretionratio was 20.4 3.5 (n = 10), and this ratio agrees well withobservations by other investigators. Observed macrozooplanktonexcretion rates showed a strong correlation with the excretionrates indirectly estimated from GDH activities. The GDH/excretionratio seems to vary depending on the internal physiologicalstates of zooplankton as well as food availability.  相似文献   

12.
Data consisting of high resolution profiles of in situ chlorophyll,copepods and primary production have been measured with a towedBatfish and profiling pumping system at two sites named ‘BIOSTAT’(9°45'N, 93°45'W) and ‘DOME’ (7°19'N,83°25'W) sites during March 1981. Primary production profileswere generated from Batfish profiles using a chlorophyll/lightmodel and incubated pump samples, the latter with high verticalresolution of 3–5 m. The BIOSTAT site had a subsurfacechlorophyll maximum situated at {small tilde}50 m, and a productionmaximum at a depth of 40 m Copepods had a mean depth centroidcorresponding to the production maximum although their distributionwas more uniformly dispersed from 0 to 40 m. The latter observationindicated that copepods occurred at depths of high productionpotential and low biomass rather than high total productionand high biomass as found at 40 m depth. The DOME site had amixed surface layer of chlorophyll (0–20 m) while copepodswere located at the base of the chlorophyll layer and primaryproduction maximum located at the surface (0–10 m). Theareal daily production measured at the BIOSTAT and DOME siteswere 0.27 and 0.80 mg C m–2day–1 respectively.  相似文献   

13.
Zooplankton composition and distribution off the coast of Galicia, Spain   总被引:3,自引:0,他引:3  
During June and September 1984, zooplankton samples were collectedwith other hydrographic and biological data along the Galiciancoast (NW of Spain). In June copepods contributed {small tilde}60%to the total zooplankton community, with larvaceans, siphonophoresand cladocerans also abundant. In September >90% of the zooplanktonsampled were copepods. The dominant species of copepods in bothJune and September were Acartia clausi, Paracalanus parvus andTemora longicornis. The meroplankton was dominated by echinoderms,bryozoans, barnacle larvae and bivalve larvae. In June the averagezooplankton biomass was 31.08 mg C m–3; the Septemberaverage was 41.69 mg C m–3. The relationship between theslopes of the regression equations (biomass versus abundance)suggests that the zooplankton assemblage in June was composedby larger animals than in September. The major concentrationof zooplankton was between 0 and 50 m, with both June and Septemberdaytime surface samples having 6–7 times the amount oforganisms than the lower water column (50–100 m). Therewere no distinct differences in total zooplankton abundancesat the inshore and offshore stations; however, the inshore stationsoften had a higher percentage of meroplankton than the offshorestations. In June zooplankton abundance at the northern transectsand the western transects was similar. In September there weregreater concentrations of zooplankton in the western Galicianshelf as compared with the northern shelf. These differencesin the horizontal distribution of the zooplankton were relatedto upwelling events.  相似文献   

14.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

15.
Measurements of hydrography, chlorophyll, moulting rates ofjuvenile copepods and egg production rates of adult female copepodswere made at eight stations along a transect across the Skagerrak.The goals of the study were to determine (i) if there were correlationsbetween spatial variations in hydrography, phytoplankton andcopepod production rates, (ii) if copepod egg production rateswere correlated with juvenile growth rates, and (iii) if therewas evidence of food-niche separation among co-occumng femalecopepods The 200 km wide Skagerrak had a stratified water columnin the center and a mixed water column along the margins. Suchspatial variations should lead to a dominance of small phytoplanktoncells in the center and large cells along the margins; however,during our study blooms of Gyrodinium aureolum and Ceratium(three species) masked any locally driven differences in cellsize: 50% of chla was >11 µm, 5% in the 11–50µm fraction and 45% <50 µm. averaged for allstations. Chlorophyll ranged from 0.2 to 2.5 µg l–1at most depths and stations. Specific growth rates of copepodsaveraged 0.10 day–1 for adult females and 0.27 day–1for juveniles The latter is similar to maximum rates known fromlaboratory studies, thus were probably not food-limited. Eggproduction rates were food-limited with the degree of limitationvarying among species: 75% of maximum for Centropages typicus, 50% for Calanus finmarchicus, 30% for Paracalanus parvus and 15% for Acartia longiremis and Temora longicornis. Thedegree of limitation was unrelated to female body size suggestingfood-niche separation among adults. Copepod production, summedover all species, ranged from 3 to 8 mg carbon m–3day–1and averaged 4.6 mg carbon m–1 day–1. Egg productionaccounted for 25% of the total.  相似文献   

16.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

17.
The structure of the zooplankton biotic community and of copepodpopulation in the coastal area of Terra Nova Bay (Ross Sea,Antarctica) was investigated during the 10th Italian AntarcticExpedition (1994/1995). Zooplankton biotic community consistedmainly of pteropods (Limacina helicina and Clione antarctica),Cyclopoid (Oithona similis), Poecilostomatoid (Oncaea curvata)and Calanoid (Ctenocalanus vanus, Paraeuchaeta antarctica, Metridiagerlachei and Stephos longipes) copepods, ostracods, larvalpolychaetes and larval euphausiids. Zooplankton abundance rangedfrom 48.1 ind m–3 to 5968.9 ind m–3, and copepodabundance ranged from 45.2 ind m–3 to 3965.3 ind m–3.The highest peak of zooplankton abundance was observed between25 m and the surface and was mainly due to the contributionof O. similis, O. curvata and C. vanus. Zooplankton biomassranged from 5.28 mg m–3 to 13.04 mg m–3 dry weight;the maximum value was observed between 25 m and the surface.Total lipid content varied from 216.44 to 460.73 mg g–1dry weight.  相似文献   

18.
The occurrence of the salp Thetys vagina was observed in theJapan Sea during spring 2004. Catches up to 187 kg wet weight(WW) per 2.18 x 105 m3 (equal to 0.9 g WW m–3) were collectedwith 10-m diameter surface-water otter trawl nets. The horizontaldistribution indicated that the high biomass was related tothe area with high chlorophyll a (Chl a) concentration, whichwas located around the subarctic front with the warm TsushimaCurrent. Five prey taxa were identified from the gut contentsof individuals from the high Chl a area. The diatom Coscinodiscusspp. (13–55 µm in diameter) dominated numerically.Another significant prey was the large diatom Coscinodiscuswailesii (219–313 µm) that is an indicator of thespring bloom in this area. The mass occurrence of T. vaginathus appears related to phytoplankton availability, though themechanisms remain uncertain.  相似文献   

19.
Feeding of nauplius stages of Eudiaptomus gracilis on mixed plastic beads   总被引:1,自引:0,他引:1  
Eudiaptomus gracilis makes up 30–40 and 80–90% ofthe zooplankton in Lake Balaton during the summer and the winterrespectively. More than half of the species population consistsof nauplii We studied feeding and size selectivity of naupliiin suspensions which contained polystyrol latex beads in a concentrationdose to the natural seston. Guts of NI nauplii were free ofboth beads and remnants of natural food Of NII–NVI nauplii,67–87% took in beads. Older animals consumed more andlarger particles. The maximum diameter of ingested beads reached29 µm On an average, NII nauplii took in 128 µm3of beads in 10 min, whereas older animals consumed 615–900µm3. The clearance rate remained below 0 01 µl h–1NII nauplii strongly preferred 1 2 µm particles Oldernauplii did not show any preference or selected only slightlyfor the smallest particles. Nauplii rejected 4–11 µmbeads. In some cases a weak positive selection could be observedtoward 12 µm or larger beads.  相似文献   

20.
The trophodynamics of a coastal plankton community were studied,focusing on fish larvae and their copepod prey. The major objectiveswere to describe distributional overlap and evaluate the predatoryimpact by larval fish. The study was carried out across DoggerBank in the North Sea, August-September 1991. Sampling transectscrossed tidal fronts off the Bank and plankton at all trophiclevels showed peak abundance within frontal zones. Also Verticallythere was a significant overlap in distributional patterns ofthe plankton. Seven species of fish larvae were abundant, ofthese sprat (Sprattus sprattus) dominated. The abundance ofone group of fish larvae peaked in the shallow water close tothe Bank, whereas other species, including sprat, were foundin deeper water. Prey preference and predation pressure of fishlarvae were assessed using information on prey sizes and growthrates of larvae and the copepod prey. We estimated larval removalof preferred prey sizes to 3–4% day–1, counterbalancedby a 3–7% day–1' replenishment from copepod productionand growth. Additional predation pressure on copepods by aninvertebrate predator was estimated to 1–3%day–1.In conclusion, the dynamics of fish larvae and other zooplankterswere closely linked. At peak abundances of fish larvae (>35mg dry weight m–2), the accumulated predation on specificsize ranges of copepods, exerted by larvae and other predators,could exceed the ability of copepod replenishment and intra-/interspecificcompetition among predators might take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号